欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译-- The Morphology Prediction of Lysozyme Crystals Deduced from the BFDH Law and.PDF

    • 资源ID:103767       资源大小:884.24KB        全文页数:4页
    • 资源格式: PDF        下载积分:1积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译-- The Morphology Prediction of Lysozyme Crystals Deduced from the BFDH Law and.PDF

    TheMorphologyPredictionofLysozymeCrystalsDeducedfromtheBFDHLawandAttachmentEnergyModelBasedontheIntermolecularInteractionZhanzhongWang,PingpingJiangSchoolofAgricultureandBioengineeringTianjinUniversityTianjin300072,PeoplesRepublicofChinawzz7698tju.edu.cnLepingDangSchoolofChemicalEngineeringandTechnologyTianjinUniversityTianjin300072,PeoplesRepublicofChinadlepinghotmail.comAbstractThecrystalmorphologyoforthorhombiclysozymeispredictedusingtheBravais-Friedel-Donnay-Harker(BFDH)andtheattachmentenergy(AE)modelsofmolecularsimulationsoftwareCerius2invacuo.Themorphologypredictedbytwomodelsisapproximatelyconsistent.ThemorphologypredictedbyAEmodelisingoodagreementwiththemorphologyofcrystalsgrownfromsolutionatpH6.5.Themaincrystalfaces011,101and110areobservedinmorphologypredictedbyAEmodel.BycleavingrevealablecrystalfacesinmorphologypredictedbyAEmodel,surfacechemistryvisualizationandtheoreticalanalysisbasedoninteractionofinintra-moleculesorinter-moleculesfortheimportantmorphologicalformsareperformed.TheresultshowsthatsterichindranceandH-bandinteractionplayscriticalrolefortheplate-likemorphologyoforthorhombiclysozyme.Keywords-lysozyme;morphologypredcition;modeling;IntermolecularInteractionINTRODUCTIONTheshapeofacrystalisgovernedbytherelativegrowthratesofeachofthecrystalfacespresent.Themostprominentfaceofacrystalistheslowestgrowing,whilethesmallestfaceisthefastestgrowing.Thus,themorphologicalimportanceofaparticularfaceisinverselyproportionaltothegrowthrateofcrystalface.Identificationofpossiblegrowthdirectionsorfacesisthefirstpartofmorphologyprediction1.EarlyworkincrystalmorphologypredictionwasundertakenbyGibbsin1875inwhichheproposedthattheshapeofacrystalwillbeonetominimizethetotalfreeenergyassociatedwiththesurfaceenergiesofthegrowncrystal.LaterBravais,Friedel,andDannayandHarker1,2proposedmorphologicalsimulationsbasedmerelyoncrystallatticegeometry.TheBFDHlaw,substantiatedbyempiricalobservation,proposedthatthecrystalwillbeformedbyfacesboundingthedirectionsofthegreatestinterplanarspacingofthecrystallattice.Accordingtothislaw,thelargertheinterplanardistancedhklis,thelargerthemorphologicalimportance(MI)ofthecorrespondinghklfaceis.Thus,basedonunitcellparameters,spacegroupandhence,extinctioncondition,andthereciprocaloftheinterplanardistances1/dhkl,usedasthedistancesfromthecentreofthecrystaltotherespectivehklsurfaces,onemayobtainatheoreticalBFDHmorphology.TheBFDHmethodestimatesthemorphologyfromthecrystalsymmetryandthelatticeparameterswithouttakingintoaccountthechemicalnatureandpackingoftheatomsormoleculesthatformthecrystalandneglectingthepossibilityofspecificenergeticinteractionsbetweenthesurfaceatomsinfluencingthecrystalmorphology.Itmaybeusedasaquickscreeningtooltoestimatethehabitofacrystal.In1955,HartmanandPerdokproposedperiodic-bondchain(PBC)theorytoaccountforenergyinteractionsbetweencrystallizingspeciesinthederivationofcrystalmorphology.LaterthistheorywasfurtherdevelopedbyHartmanandHartmanandBennema3.APBCisastrongbondbetweenmoleculesrunningparalleltoacrystallographicdirection.AcrystalismadeofanetworkofPBCshavingdifferentenergiesdependingonthebondenergybetweenthemoleculestheycontain.Consequently,itispossibletoclassifythePBCsasafunctionoftheirenergyanddistinguishstrongPBCsfromweakPBCs4.Growthrateisrelatedtodirectionofbondchainandthefastestdirectionofcrystalgrowthisthatofthestrongestchemicalbond.In1980,basedonPBCmodel,HartmanandPerdokproposedattachmentenergymodel.Buildonincorporatingenergytermsinthecalculationofthetheoreticalcrystalmorphology,advancesinmorphologypredictionwererealizedwhencrystalgrowthwasviewedastheattachmentofslicesorlayersoforderedmoleculestoanexistingcrystalface1.Thisconcept,knownastheattatchmentenergy(AE)method,requiresthedeterminationofthelatticeandsliceenergiesforcalculationoftheattachmentenergyineachimportantcrystallographicdirection.Thisattachmentenergydirectlyinfluencesthemacroscopicshapeofthecrystal4.Thelatticeenergyistheenergycalculatedbysummingpairinteractionsfortheentire,perfectcrystal.Theenergyreleasedontheformationofagrowthsliceofthickness,dhkl,isthesliceenergy,whiletheenergyreleasedontheattachmentofagrowthslicetothecrystalsurfaceistheattachmentenergy.Thetermofinterestformorphologicalpredictionsistheattachmentenergyofeachcrystalface.Subtractingthesliceenergyforeachfacefromthelatticeenergyprovidestheattachmentenergyforeachofthefaces.Therelativegrowthrateforeachfacewastakentobeproportionaltoattachmentenergyandhencefaceswiththelowestattachmentenergieswerepredictedtobetheslowestgrowingsurfacesandhencetohavethehighestmorphologicalimportance5.Thenamecrystallogenesisarosewhenitbecameevidentthatthefieldofcrystallizationofproteinsandotherbiologicalmacromoleculeswasnotrestrictedsimplytocrystalproductionfordiffractionstudies,butitencompassed,infact,allphasesofstructuralbiology,fromproteinexpressionandpurification,torecordingofdiffractiondata.Withregardto978-1-4244-4713-8/10/$25.00©2010IEEEbiologicalmacromolecule,X-raycrystallographyhasplayedafundamentalroleinconnectingthedotsbetweengenomicdataandbiologicalfunctionbyprovidingaccuratestructuralinformationtoresolveseveralsignificantresearchproblems.TheearliestX-raydiffractionstudiesofthestructuresofbiologicalmacromoleculesbeganintheearlypartofthe20thcentury,verylittleprogresshasbeenmadeinourunderstandingofhowtofacilitatetheprocessofcrystallizingsuchmacromoleculesforstructuralanalyses.Asaresult,obtaininghigh-qualitymacromolecularcrystalsremainsdifficult,unpredictable,andfrustratingandbecomespersistentbottlenecktothegreaterapplicationofX-raycrystallographyinstructuralbiology6,7.SolvingproteinstructuresbyX-raycrystallographyiscontingentupontheavailabilityofordered,diffraction-qualitycrystals8.Inthefieldofcrystalgrowth,inordertoobtainhigh-qualitylaboratory-growncrystals,theresearcherwhoisinterestedincrystalmorphologyoftenneedstovisualizeacrystalhabitresultingfromasetofobservedorcalculateddata,suchasgrowthrates,surfaceenergiesandhabitcontrollingfactors.Crystallizationiseffectedviamolecularrecognitionattheinterfacebetweenthegrowingcrystalanditsmotherphase.Sucheffectshavelongbeenobservedandhavebeenrelatedtogrowthsolutionthermodynamics,specificfacestructureandgrowthmechanism,andmolecularrecognitionprocessatspecificplanes9.Increasedunderstandingofcrystalgrowthfromsolutioncanenhancetheperformanceoftheseparationandpurificationprocessesinmanyindustries.Althoughthecrystalgrowthhabitdiffersfromthetheoreticalmorphologyduetotheinfluenceofcrystalgrowthenvironment,thecrystalmorphologyisverymuchconnectedwiththecrystalstructure.Crystalmorphologyhasbeenthefocusofnumerousresearchefforts10-12.Crystallizationofheneggwhitelysozymehasalreadybeenstudiedforsomeyearssinceitisanidealmodelsystemforcrystallizationofproteinsingeneral.Otherkindsoflysozymecrystalshaveseldombeenused,exceptforthetheorthorhombicform13.Themorphologyanalysisoftheorthorhombiclysozymecrystalsmayincreaseourknowledgeofcrystalgrowthoflysozymetoinstructtoobtainhigh-qualitycrystals,whichcanbeappliedstructuralanlysistoprovideaccurateinformationforgenomicdataandbiologicalfunction.Theaimofthepresentresearchiswastoapplyadvancedmolecularmodellingtechniquestosimulatethetheoreticalcrystalmorphologyoforthorhombiclysozyme,andcomparesthetheoreticalmorphologywithactualhabitoflysozymecrystalgrowninanaqueoussolution.Inthecourseofrefiningthemodel,valuableinformationconcerningmolecularinteractionswithinthelysozymecrystalwasextractedfromthesimulation.EXPERIMENTALANDCOMPUTATIONALMOLECULARMODELINGMETHODOLOGYMaterialsHenegg-whitelysozyme,recrystallizedandlyopholizedwaspurchasedfromSigmaandusedwithoutfurtherpurification.Itsmolecularweightwasassumedtobe14.3kgmol-1.Otherchemicalreagentswereanalyticalpurity.DistilleddeionizedwaterofHPLCgradewasused.Crystallizationexperimentandmicroscopymeasurement.Protein-waterstocksolutionswithproteinconcentrationof10-20%wereprepared,andtheirmeasuredpHwas6.5orslightlyhigher.Ifnecessary,pHwasloweredto6.5bysmalladditionsofHClaqueoussolutions.Supersaturatedsolutionswereobtainedbymixingprotein-waterstocksolutionswithconcentratedsalt-waterstocksolutions.Astocksolutionofsodiumacetatebuffercontaining0.02%sodiumazidewasalsoaddedtominimizepossiblepHchanges.Thesupersaturatedsolutionswerethenleftat4°C(3-15daysdependingonsamplesupersaturation)toproducecrystals.Amicroscopicobservationofthecrystalmorphologywascarriedouttakingadvantageofelectronicmicroscopy.DigitalimagesanalysiswasperformedusingaPanasonicLumixDMC-FZ20systemoperatingthePanasonicimageanalysisconnectedtoa3CCDcolorvisioncameramountedonanOlympusBH2opticalmicroscope.Cerius2modelingCrystalstructuresdataoforthorhombiclysozymewasachievedbyProteinDataBanktocalculatetheoreticalmorphology.Experimentalmorphologywasusedtocomparewiththeresultofthesimulatedtheoreticalmorphology.CrystalMorphologyPredictionUsingBFDHandAEmodelClassicmolecularmechanicsanddynamicssimulationswerecarriedoutusingtheCerius2softwarepackage.Thecrystalbuilder,molecularmechanics,andmorphologypredictionmoduleswereemployedtoaccomplishthemodelinggoalsofthisresearch.Universalforcefieldwasused.RESULTSANDDISCUSSIONStructureanalysisThecrystalstructureoflysozymereportedincludedorthorhombic,monoclinic,tetragonalandtriclinicforms,whichhasbeenresolvedusingX-raydiffractionstudies.Inoursimulations,thecrystalstructureoftheorthorhombiclysozymewasobtainedfromtheProteinDataBank14.Thestere-structureoflysozymemoleculeisshowninFigure1.Theunitcellofitscrystalstructureareasfollows:a=30.47,b=59.39,c=68.78,=90°,andspacegroupisP212121,whichisshowninFigure2.Figure1.Thestere-structureoflysozymemolecule:ballandstickstyle(left),stickstyle(right)Figure2.TheunitcelloforthorhombiclysozymeMorphologypredictionbyBFDHmodelStructureanalysisThethreefaces110,002,011,101dominatedthecrystalhabitasrevealedfromtheBFDHmorphologicalprediction.TheresultsaresummarizedinTable.AccordingtoBFDHlaw,thelargertheinterplanardistancedhklis,thelargerthemorphologicalimportance(MI)ofthecorrespondinghklfaceis.FromtheTable1,itcanbeseenthatdhklof011faceisthelargestanditsfacetareais63.49%oftotalfacetarea,whichmeans011faceownsthelargestthemorphologicalimportance(MI).Thedhklof101faceisslightlylargerthan110faceanddhklof002isthesmallest.CrystalmorphologypredictedbyBFDHmodelcanbededucedandwasshowninFigure3(a),revealingallfaceswhichbelongtothecrystallographiczones110,002,011,and101,respectively.FromFigure3(a),thereisawellagreementwithcalculationresultinTable1.The011facewasfoundtobethelargestinarea,subsequently101face,110faceand002face.TABLE.CALCUTIONRESULTSOFBFDHMODELhklMultiplicitydhklTotalfacetareaTotalfacetarea/%011444.9590.9763.49002234.399.0406.309101427.8626.8718.75110427.1116.4111.45MorphologypredictionbyAEmodelTheresultsofattachmentenergycalculationswerereportedinTable.Basedonattachmentenergymodel,theMIsequenceisbasedontheassumptionthatthegrowthratesoffacesareproportionaltoattachmentenergy.Hence,thegreaterattachmentenergy,thefasterthecorrespondingfacegrowsandthesmalleritsmorphologicalimportance.Oncetherelativegrowthratesofthesignificantfacesareknown,amacroscopicimageofthecrystalmorphologycanbepostulated.CrystalmorphologypredictedbyAEmodelcanbededucedandwasshowninFigure3(b).Themorphology(Figure3a)predictedbyBFDHmodelisapproximatelyconsistentwiththatpredictedAEmodel.Themaindifferencesexistindisappearanceof002faceinAEmodel.FromTableandFigure3(b),itcanbeseenthatthereisagoodcorrelationbetweengrowthfaceareaandtheattachmentenergyofthedominantface.Themorphologypredictedisplatelike,suggestingthatasinglefaceisindeeddominatingtheoverallcrystalgrowth.Inthesecases,themostdominantfacehasanattachmentenergywhoseabsolutevalueismuchlowerthanthatfortheotherfaces,andtherelativegrowthrateisnotablysmaller.Hence,onefacedominatesthecrystalgrowth.TABLE.CALCULATIONRESULTSOFAEMODELhklMultiplicitydhklEatt(total)TotalfacetareaTotalfacetarea%/Å/(kcal/mol)/Å2/Å2011444.95-74.1116130076.80101427.8-148.74285020.40110427.11-167.758782.799(a)(b)Figure3.Predictedcrystalmorphology(a)BFDHmodel,(b)AEmodelComparisonofpredictedmorphologywithexperimentalgrowthcrystalThemorphologicalsimulationswereconfrontedwithexperimentaldataobtainedfromsolutiongrowncrystals.Thecrystalmorphologywasassessedbyopticalmicroscopy.MorphologicalsketchwasshowninFigure4.Figure4.ExperimentalcrystalmorphologyThepredictedmorphologybasedupontheAEmodelandBFDHmodelcomparesfavorablywiththeexperimentalmorphology.Themaindifferencebetweentheexperimentalmorphologyandpredictedmorphologyisthat002facedisappearsintheexperimentalmorphology,whichismoreconsistentwiththemorphologypredictedbyAEmodelthanbyBFDHmodel.Despitedifferencebetweenpredictedandexperimentalmorphology,itshouldberememberedthat,overall,thepredictedandsolutiongrownmorphologyarerathercomparable.Byfurtheranalyzingmorphologypredictedbytwomodelsandexperimentalmorphology,itcanbeseenthat011faceisthemostdominantinarea.Thiswasperhapsduetothefactthatthisfacehadsmallergrowthpromotinghydrogen-bondingcomponentinvolvedintheintermolecularinteractionsinvolvedinitsattachmentenergy,incontrasttothoseonthe110,002,101faces.SurfacechemistryvisualizationfortheimportantmorphologicalformsThesurfacechemistryofthethreemainsurfaceswasinvestigatedtoprovidebetterunderstandingtointeractionandrecognitionamonglysozyme:thethreefaces011,101,and110expecteddominatethecrystalhabitasrevealedfromtheAEmorphologicalprediction.(a)(011)(b)(101)(c)(110)Figure5.Cleavagestructureofmainexposurecrystalplane(a)011,(b)101,(c)110TheresultsaresummarizedinFigure5.The011surface(Figure5a)wasfoundtoberoughonthemolecularlevel.Incontrastto101crystalface,chemicalgrouprevealingisbigger,whichcanbringaboutagreatersterichindrancetoholdbackpackingoflysozymemoleculeinsolutionin011face.Asaresult,thegrowthrateof011crystalfaceiscomparativeslow,showinghighmorphologicalimportance.Examinationofthe101surface(Figure5b)revealsasmoothersurfacecomparedwith011faceonthemolecularlevel.Thechemicalgrouprevealingissmall,whichallowslysozymemoleculeeasilytopackin101surface,leadingto101surfacehaverapidgrowthrate.The110surface(Figure5c)wasfoundtobeveryopenandroughonthemolecularlevelrevealingadiagonalpatterndownthroughthesurfacewithalternatingorientationsofthelysozymemolecule.Thepatternproducedwasdiagonalinnaturewithhydrogenbondinganddonororacceptoratomswereactiveonthesurfaceforbindingoncomingmolecules.Inaddition,withthissurface,bothamino-groupandhydroxylcomponentsoflysozymemoleculewerefoundtoberevealabletopossiblebindingwithappropriatemolecules.Asaresult,thegrowthrateof110surfaceisthegreatest,showingthesmallestmorphologicalimportance.CONCLUSIONSThecrystalmorphologyoforthorhombiclysozymeispredictedusingAEmodelinconjunctionwithBFDHmodel.Accuratemodelingandmorphologypredictionofthiscrystalareachieved.Themorphologypredictedbytwomodelsisapproximatelyconsistent.ThemorphologypredictedbyAEmodelismoreconsistentwiththemorphologyofcrystalsgrownfromsolutionthanBFDHmodel.Themaincrystalfaces011,101and110areobservedanddominantinmorphologypredictedbyAEmodel.Bycleavingthesedominantcrystalfaces,surfacechemistryvisualizationandtheoreticalanalysisbasedoninteractioninintra-moleculesorinter-moleculesfortheimportantmorphologicalformsareperformed.TheresultindicatesthatsterichindranceeffectandH-bandinteractionplayscriticalrolefortheplate-likemorphologyoforthorhombiclysozyme,whichprovidesaimportantinstructioninmolecularlevelforpreparationofhigh-qualitylysozymecrystal.ACKNOWLEDGMENTThisworkwasfundedbytheNationalNaturalScienceFoundationofChina(No.20806053),DoctoralFundofMinistryofEducationofChina(No.200800561029)andChinaPostdoctoralScienceFoundation(No.20080440677)REFERENCES1J.C.Givand,R.W.Rousseau,P.J.Ludovice,“CharacterizationofL-isoleucinecrystalmorphologyfrommolecularmodeling,”J.Cryst.Growth,vol.194,pp.228238,1998.2J.Prywer,“ExplanationofsomepeculiaritiesofcrystalmorphologydeducedfromtheBFDHlaw,”J.Cryst.Growth,vol.270,pp.699710,2004.3G.Pfefer,R.Boistelle,“Theoreticalmorphologyofadipicacidcrystals,”J.Cryst.Growth,vol.208,pp.615622,2000.4P.Hartman,“Theattachmentenergyasahabitcontrollingfactor:I.Theoreticalconsiderations,”J.Cryst.Growth,vol.49,pp.145156,1980.5S.David,C.Coombes,A.Richard,“CalculationofAttachmentEnergiesandRelativeVolumeGrowthRatesasanAidtoPolymorphPrediction,”Cryst.GrowthDes,vol.5,pp.879885,2005.6C.M.Li,K.L.Kirkwood,G.D.Brayer,“TheBiologicalCrystallizationResource:FacilitatingKnowledge-BasedProteinCrystallizations,”Cryst.GrowthDes,vol.7,pp.21472152,2007.7S.X.Lin,A.McPherson,R.Giegé,“GoodCrystals,StillaChallengeforStructuralBiology,”J.Cryst.Growth,vol.7,pp.21242125,2007.8A.Warke,C.Momany,“AddressingtheProteinCrystallizationBottleneckByCocrystallization,”J.Cryst.Growth,vol.7,pp.22192225,2007.9M.W.Elaine,J.R.Kevin,J.M.Stephen,“AMolecularDynamicsStudyofSolventandImpurityInteractionontheCrystalHabitSurfacesof-Caprolactam,”Langmuir,vol.14,pp.56205630,1998.10N.Kubota,J.W.Mullin,”Akineticmodelforcrystalgrowthfromaqueoussolutioninthepresenceofimpurity,”J.Cryst.Growth,vol.152,pp.203208,1995.11H.C.Koolman,R.W.Rousseau,“EffectsofisomorphiccompoundsonthepurityandmorphologyofL-isoleucinecrystals,”AIChEJournal,vol.42,pp.147153,1996.12J.Z.Chen,N.F.Zhuang,S.K.Lin,“Theoreticalmorphologyandgrowthhabitofrubidiumhydrogenselenatecrystals,”J.Cryst.Growth,vol.205,pp.584589,1999.13Y.Matsuzukia,T.Kubotab,X.Y.Liua,“AFMobservationofthesurfacemorphologyandimpurityeffectsonorthorhombichenegg-whitelysozymecrystals,”J.Cryst.Growth,vol.242,pp.199208,2002.14http:/www.rcsb.org/pdb/home/home.do

    注意事项

    本文(外文翻译-- The Morphology Prediction of Lysozyme Crystals Deduced from the BFDH Law and.PDF)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!