欢迎来到人人文库网! | 帮助中心 人人文库renrendoc.com美如初恋!
人人文库网
首页 人人文库网 > 资源分类 > PDF文档下载

外文资料--Monte Carlo Simulations of Spatial Patterns of the Degree of (1).PDF

  • 资源大小:496.11KB        全文页数:5页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:1
游客快捷下载 游客一键下载
会员登录下载
下载资源需要1

邮箱/手机号:
您支付成功后,系统会自动为您创建此邮箱/手机号的账号,密码跟您输入的邮箱/手机号一致,以方便您下次登录下载和查看订单。注:支付完成后需要自己下载文件,并不会自动发送文件哦!

支付方式: 微信支付    支付宝   
验证码:   换一换

友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文资料--Monte Carlo Simulations of Spatial Patterns of the Degree of (1).PDF

MONTECARLOSIMULATIONSOFSPATIALPATTERNSOFTHEDEGREEOFPOLARISATIONFORBACKSCATTERINGLIGHTSINTURBIDMEDIAWITHBIREFRINGENCEYINQIFENGANDYAOQINLIUOPTO–MECHATRONICEQUIPMENTTECHNOLOGYBEIJINGAREAMAJORLABORATORYBEIJINGINSTITUTEOFPETROCHEMICALTECHNOLOGYBEIJING102617,PRCHINAFENGYINQIBIPTEDUCNZHENGCHANGDEPARTMENTOFMECHANICALENGINEERINGBEIJINGINSTITUTEOFPETROCHEMICALTECHNOLOGYBEIJING102617,PRCHINACHANGZHENGBIPTEDUCNABSTRACTINOPTICALCOHERENCETOMOGRAPHYOCTTECHNOLOGY,ASCONTRASTMECHANISMANDACHARACTERIZATIONOFTHEOPTICALPOLARIZATIONPROPERTIESOFABIOLOGICALTISSUE,ITISVERYIMPORTANTOFPOLARIZATIONINWHICHBIREFRINGENCEISONEOFTHERELATIVEPHENOMENAWEANALYZEDTHEPROPAGATIONOFPOLARIZEDLIGHTINALINEARLYBIREFRINGENTTURBIDMEDIUMANDSIMULATEDTHEDEGREEOFPOLARIZATIONOFDIFFUSELYBACKSCATTEREDLIGHTSUSINGTHESTOCKSMUELLERFORMALISMANDMONTECARLOALGORITHMSTATISTICALDISTRIBUTIONSOFTHECHANGESOFPOLARIZATIONINTHETURBIDMEDIUMWITHDIFFERENTBIREFRINGENTPARAMETERSAREDEMONSTRATEDKEYWORDSPOLARIZEDLIGHT,LINEARLYBIREFRINGENT,MONTECARLOSIMULATION,STOCKSMUELLERFORMALISMIINTRODUCTIONTHEREHASBEENANINCREASINGINTERESTINTHEPROPAGATIONINRANDOMLYSCATTERINGMEDIAOFPOLARIZEDLIGHTINTHEFIELDSOFOPTICALIMAGINGANDSPECTROSCOPYINMEDICALDIAGNOSTICTECHNIQUESFORCANCERANDFOROTHERTISSUEPATHOLOGIES,ESPECIALLYINOPTICALCOHERENCETOMOGRAPHYOCTTECHNOLOGYINWHICHPOLARIZATIONISASCONTRASTMECHANISMANDACHARACTERIZATIONOFTHEOPTICALPOLARIZATIONPROPERTIESOFABIOLOGICALTISSUETHEORETICALANALYSESANDEXPERIMENTALSTUDIESHAVEBEENCARRIEDOUTSIMULTANEOUSLYFOREXAMPLE,HIELSCHER,ETAL1USEDASTOKESVECTOR/MUELLERMATRIXAPPROACHTOPOLARIZEDLIGHTSCATTERINGINORDERTOACHIEVEFULLEXPERIMENTALCHARACTERIZATIONOFTHEOPTICALTHEOPTICALPROPERTIESOFASAMPLEUNDERINVESTIGATIONTHEYGENERALIZEDTHECONCEPTOFANEFFECTIVEMUELLERMATRIXANDMEASUREDTHETWODIMENSIONALMUELLERMATRIXOFBACKSCATTEREDLIGHTRAKOVICETAL2,3ANDBARTELETAL4DEVELOPEDMONTECARLOALGORITHMSTOSTUDYTHEBACKSCATTEREDINTENSITYPATTERNSANDCOMPAREDTHEIRSIMULATIONRESULTSWITHEXPERIMENTALDATARAKOVICETALESTIMATEDTHECONTRIBUTIONOFEACHSCATTEREDPHOTONBYANESCAPEFUNCTIONFROMAPARTICULARSCATTERINGLOCATION,ANDBARTELETALTRACEDTHEPOLARIZATIONSTATEOFINDIVIDUALPHOTONSUNTILTHEYAREEITHERABSORBEDORLEAVETHEMEDIUMRECENTLY,MONTECARLOTECHNIQUESTODESCRIBETHEPROPAGATIONOFPOLARIZEDLIGHTINBOTHISOTROPICTURBIDMEDIUMANDLINEARLYBIREFRINGENTTURBIDMEDIAAREPRESENTED58HOWEVER,COMPARINGWANGSRESULTS7OFTHESYMMETRICALRELATIONSINTHE16MUELLERMATRIXELEMENTSFORISOTROPICTURBIDMEDIAWITHTHATOFTHEEXPERIMENTALRESULTSFROMHIELSHERETAL1,ITISNOTICEDTHATTHEREEXISTSANINCONSISTENCY9HIELSCHERSANALYTICALANDNUMERICALMODELSTHATDESCRIBEPOLARIZEDLIGHTPROPAGATIONINISOTROPICTURBIDMEDIAAREEXTENDEDTOMULTIPLYSCATTERINGTURBIDMEDIAWITHLINEARBIREFRINGENCEINTHISPAPERTHEDETAILEDDESCRIPTIONSOFPOLARIZEDLIGHTBACKSCATTEREDFROMABIREFRINGENTTURBIDMEDIUMAREBASEDONTHEBASICCONCEPTSOFTHESTOKESMUELLERFORMALISM10ANDMONTECARLOALGORITHMPREVIOUSLYDEVELOPEDBYWANGANDJACQUES11WESIMULATEPOLARIZATIONDEPENDENTPHOTONPROPAGATIONTHROUGHMULTIPLYSCATTERINGTURBIDMEDIAWITHLINEARBIREFRINGENCEANDSHOWTHATOURSIMULATIONSTRACETHEPOLARIZATIONSTATESOFINDIVIDUALPHOTONSUNTILTHEYAREEITHERABSORBEDORLEAVEABIREFRINGENTMEDIUMANDDETERMINETHEEFFECTIVEBACKSCATTEREDMULLERMATRIXELEMENTSWHICHHAVEDIFFERENTSYMMETRICALRELATIONSHIPSANDSHAPESWITHTHATOFWANGSRESULTS6,7IIANALYTICALANDNUMERICALMODELASTOKESMUELLERFORMULATIONTHEBASICSTOKESMUELLERFORMALISMANDMONTECARLOTRACINGMETHODHAVEBEENDESCRIBEDEARLIER2,4,10WITHINTHISFORMALISM,THEPOLARIZATIONSTATEOFLIGHTCANBECOMPLETELYDETERMINEDBYFOURPARAMETERSWHICHMAKEUPTHESTOKESVECTORS⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡LRRLLRRLRRLLRRLLEEEEIEEEEEEEEEEEEVUQIS,1WHEREERANDELARETWOORTHOGONALELECTRICALFIELDCOMPONENTSINAPLANEPERPENDICULARTOTHEPROPAGATIONDIRECTIONTHE“”INDICATESTHECOMPLEXCONJUGATE,ANDTHEBRACKETSREPRESENTENSEMBLEAVERAGEORTIMEAVERAGEOFERGODIC,STATIONARYPROCESSESNOTETHATTHECOMPONENTSQANDTHISWORKISSUPPORTEDBYA2007GRANT4072009FROMGENERALPROGRAMOFBEIJINGNATURALSCIENCEFUNDANDTHEGRANTSFROMTHERETURNEDSCHOLARSANDSTUDENTSFUNDINGPROGRAMSOFMINISTRYOFEDUCATIONOFCHINAANDBEIJINGMINISTRYOFPERSONNEL9781424447138/10/25002010IEEEUOFTHESTOKESVECTORDEPENDONTHECHOICEOFHORIZONTALANDVERTICALDIRECTIONSIFTHEBASISVECTORSLEKANDREKAREROTATEDTHROUGHANANGLEΦLOOKINGAGAINSTTHEDIRECTIONOFLIGHTPROPAGATION,THETRANSFORMATIONFROMSTOKESPARAMETERSI,Q,U,VTOSTOKESPARAMETERSI,Q,U,VRELATIVETOTHEROTATEDAXESLEKANDREKIS⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡VUQIVUQIRVUQI10000COS2SIN200SIN2COS200001ΦΦΦΦΦ2WHERERΦISASTANDARD44ROTATIONMATRIXITISOBVIOUSFROM2THATTHESTOKESPARAMETERSI,Q2U2,ANDVAREINVARIANTUNDERTHEROTATIONOFREFERENCEDIRECTIONSINADDITION,THESTOKESPARAMETERSARENOTALLINDEPENDENT2222VUQI≥3EQUALITYHOLDSFOR100PERCENTPOLARIZEDLIGHTTHEINEQUALITYIN3LEADSNATURALLYTOTHENOTATIONOFTHEDEGREEOFPOLARIZATIONDOPIVUQ/222Φ,4THEDEGREEOFLINEARPOLARIZATIONDOLPIUQ/221Φ,5ANDTHEDEGREEOFCIRCULARPOLARIZATIONDOCPIV/2Φ6STOKESCOMPONENTRRLLEEEEIISATOTALINTENSITYINANOBVIOUSINTERPRETATIONWHENTHEIRRADIANCEIISNORMALIZEDTOUNITY,STOKESVECTORSCANBENOTEDAS1,0,0,0,1,1,0,0,1,0,1,0,AND1,0,0,1,FORNATURALLIGHT,HORIZONTALLINEARLYPOLARIZEDLIGHT,45DEGREELINEARLYPOLARIZEDLIGHT,ANDRIGHTHANDCIRCULARPOLARIZEDLIGHT,RESPECTIVELYWHENAPOLARIZATIONSTATEOFASCATTEREDLIGHTISEXPRESSEDTHROUGHSTOKESVECTORS,ITCANBERELATEDTOTHEPOLARIZATIONSTATEOFANINCIDENTLIGHTSBYTHEMUELLERMATRIXMOFANOPTICALELEMENTORAMATERIALASTHESCATTERINGISINVOLVED,THISMUELLERMATRIXISALSOKNOWNASTHESCATTERINGMATRIX⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛VUQIMMMMVUQIMMMMMMMMMMMM444342413433323124232221141312117THATIS,MUELLERMATRIXDESCRIBESTHERELATIONBETWEEN“INCIDENT”AND“TRANSMITTED”OR“REFLECTED”STOKESVECTORSTHEMEASUREMENTOFMUELLERMATRIXCOMPLETELYCHARACTERIZESTHEOPTICALELEMENTORMATERIALINTERMSOFITSOPTICALPROPERTIESFOREXAMPLE,THEMUELLERMATRIXFORANIDEALLINEARRETARDERIS7⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ΔΔΔΔΔΔΔΔΔΒΔCOSSINCSINS0SINCCOSSCOS1CS0SINSCOS1CSCOSC00001,2222222222222222CSM8WHEREC2COS2Β,S2SIN2Β,ΒISANANGLEBETWEENTHEHORIZONTALCOMPONENTOFTHEINCIDENTELECTRICFIELDDIRECTIONINLEKANDONEOFTHEAXESOFTHELINEARRETARDER1EKFIG1,ANDTHERETARDANCEΔISTHEPHASEDIFFERENCEINTRODUCEDBYTHELINEARRETARDERFIGURE1E1ANDE2SPECIFYTHEAXESOFANIDEALINEARRETARDERBMONTECARLOCALCULATIONSBYEMPLOYINGABOVESTOKESMUELLERFORMALISMOFPOLARIZEDLIGHT,AMONTECARLOMETHODTOBEUSEDTOCALCULATETHEEFFECTIVEBACKSCATTEREDMUELLERMATRIXM{MIJ}FORABIREFRINGENTTURBIDMEDIUMDEFINEDBY7WHICHCONNECTSANINCIDENTSTOKESVECTORSWITHANOUTGOINGVECTORSOFBACKSCATTEREDLIGHTFROMTHEBIREFRINGENTTURBIDMEDIUMWILLBECONSIDEREDINTHEFOLLOWINGATTHEBEGINNING,APHOTONISSUPPOSEDTOINJECTORTHOGONALLYINTOABIREFRINGENTTURBIDMEDIUMATTHEORIGIN,WHICHCORRESPONDSTOACOLLIMATEDARBITRARILYNARROWBEAMOFPHOTONSTHEPOSITIONANDDIRECTIONOFTHEPHOTONISSPECIFIEDINTHEGLOBALSYSTEMI,J,KBYTHECARTESIANCOORDINATESX,Y,Z,WHICHINITIALIZEDTO0,0,0ANDDIRECTIONALCOSINESUX,UY,UZ,WHICHINITIALIZEDTO0,0,1THEDIRECTIONOFTHESLOWAXISOFTHEBIREFRINGENTMEDIUMISALONGTHEXAXIS,WHICHISTHEORIENTATIONWITHHIGHERREFRACTIVEINDEXLETS0I0,Q0,U0,V0TBETHESTOKESVECTORTHATCORRESPONDSTOTHEIRRADIANCEOFINCIDENTLIGHTWITHRESPECTTOTHEXZPLANE,WHERETHESUPERSCRIPTTDENOTESTRANSPOSEONCESTEPSIZESITHATISCALCULATEDBASEDONTHESAMPLINGOFTHEPROBABILITYDISTRIBUTIONFORPHOTONSFREEPATHISSPECIFIED,THEPHOTONISREADYTOBEMOVEDINTHEBIREFRINGENTTURBIDMEDIUMWEWILLTRACEALARGENUMBEROFRANDOMLYCHOSENPHOTONTRAJECTORIESTHATALLSTARTATTHEORIGINAL0,0,0EACHTRAJECTORYISDEFINEDBYTHECOLLECTIONOFPOINTSXI,YI,ZI,I1,2,N,WHERETHESCATTERINGTAKESPLACETOKEEPTHETRACKOFAPHOTONSPOLARIZATIONSTATESASITUNDERGOESMULTIPLESCATTERINGEVENTSINABIREFRINGENTTURBIDMEDIUM,ITISASSIGNEDTHEFOURCOMPONENTSTOKESVECTORSIANDALOCALCOORDINATESYSTEMERI,ELI,E3IINWHICHSIISDEFINEDFIG2THEPRIMECORRESPONDSTOALOCALREFERENCEPLANEINALOCALCOORDINATESYSTEM,WHICHISDIFFERENTFROMTHEXZREFERENCEPLANEINTHEGLOBESYSTEMI,J,KFOLLOWINGTHESIMILARTRACINGMETHODOFBARTELANDHIELSCHER4,THELOCALCOORDINATESYSTEMISCHOSENSOTHATE3IPOINTSTHEDIRECTIONOFPROPAGATIONOFTHEPHOTON,ANDERI,ANDELIAREORIENTEDPARALLELANDPERPENDICULARTOTHELOCALREFERENCEPLANE,RESPECTIVELYFOREACHSCATTERINGEVENT,THESAMPLINGDEFLECTIONANGLEΘANDAZIMUTHALANGLEΦFROMUNIFORMLYGENERATEDRANDOMNUMBERSISPERFORMEDWITHTHEREJECTIONMETHOD4ACCORDINGTOTHEFOLLOWINGPROBABILITYDENSITYFUNCTION5,WHICHISAFUNCTIONOFTHEINCIDENTSTOCKSVECTORS0I0,Q0,U0,V0T0002SIN2COS,IUQBAΦΦΘΘΦΘΡ,9ONCEΘIANDΦIARECHOSEN,BOTHALOCALCOORDINATESYSTEMERI,ELI,E3IANDSTOKESVECTORSIOFTHEPHOTONPACKETISUPDATEDUPONEACHSCATTERINGEVENTINTHEBIREFRINGENTTURBIDMEDIUMFIGURE2LOCALCOORDINATESYSTEMSOFAPHOTONPRIORTOANDAFTERASCATTERINGINTHEFIG2,THELOCALCOORDINATESYSTEMERI,ELI,E3IPRIORTOASINGLESCATTERINGEVENTISROTATEDABOUTE3IWITHANGLEΦITOOBTAINEDATRANSITIONCOORDINATESYSTEMERI,ELI,E3IDUETOTHESCATTERINGEVENT,THESYSTEMERI,ELI,E3IISROTATEDAGAINABOUTERIWITHTHESCATTERINGANGLEΘITOOBTAINEDANOTHERTRANSITIONCOORDINATESYSTEMERI,ELI,E3ITHENASASTEPSIZESITHATTHEPHOTONTAKESISSPECIFIED,THESYSTEMERI,ELI,E3IISMADEAPARALLELMOVEALONGTHEPROPAGATIONDIRECTIONE3ITOOBTAINANEWLOCALCOORDINATESYSTEMERI1,ELI1,E3I1THEPHOTONPOSITIONSPECIFIEDINEACHLOCALCOORDINATESYSTEMBYTHECARTESIANCOORDINATESERI,ELI,E3ICANBEEXPRESSEDBYAVECTORIIILILIRIRIEAEAEAA33KKKK10THISVECTORGIVENLOCALLYISUPDATEDAS⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛IIILIRIIIIIIIIIIIIILIRSAAAAAA00COSSIN0COSSINCOSCOSSINSINSINSINCOSCOS3I1311ΘΘΦΘΦΘΦΦΘΦΘΦ,11BY9,THENEWDIRECTIONOFTHEPHOTONPACKETINTHEGLOBALSYSTEMI,J,KISFOUNDTOBEUPDATEDAS⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100COSSIN0COSSINCOSCOSSINSINSINSINCOSCOS101111I22222IIIIIIIIIIIIIIIIIIIIIIIIIIIIUZUZUYUZUZUYUZUXUXUZUZUXUZUYUZUYUXΘΘΦΘΦΘΦΦΘΦΘΦ12ONTHEOTHERHAND,STOKESVECTORSIGIVENINALOCALCOORDINATESYSTEMERI,ELI,E3IISFIRSTPROJECTEDINTOALOCALSCATTERINGPLANEBYTHEROTATIONALMUELLERMATRIXRΦIDEFINEDIN2ATTHISPOINT,THESTOKESVECTORIISRΦ−ISGIVENWITHRESPECTTOTHESYSTEMERI,ELI,E3IITSHOULDBENOTEDTHATTHEROTATIONANGLEINTHESENSEOFTHEDIRECTIONOFLIGHTPROPAGATIONISΦIBECAUSETHEDIRECTIONOFROTATIONISCOUNTERCLOCKWISEBYTHEUSUALDEFINITIONOFRΦIN2ASWESIMPLYCONSIDERTHECASEOFMIESCATTERING,ASINGLESCATTERINGPROCESSWITHSCATTERINGANGLEΘICANBEDESCRIBEDBYASINGLESCATTERINGMUELLERMATRIXIMΘ,WHICHTAKESARELATIVELYSIMPLEFORM10,12⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛DE00ED0000AB00BAIIIIIIIIIMΘΘΘΘΘΘΘΘΘ,13THENTHERESULTINGSTOKESVECTORIIISRMΦΘISGIVENWITHRESPECTTOTHESYSTEME

注意事项

本文(外文资料--Monte Carlo Simulations of Spatial Patterns of the Degree of (1).PDF)为本站会员(图纸帝国)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(发送邮件至[email protected]或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5