欢迎来到人人文库网! | 帮助中心 人人文库renrendoc.com美如初恋!
人人文库网
首页 人人文库网 > 资源分类 > DOC文档下载

企业研究论文-联合分析方法对产品属性的应用研究.doc

  • 资源大小:12.09KB        全文页数:7页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:2
游客快捷下载 游客一键下载
会员登录下载
下载资源需要2

邮箱/手机号:
您支付成功后,系统会自动为您创建此邮箱/手机号的账号,密码跟您输入的邮箱/手机号一致,以方便您下次登录下载和查看订单。注:支付完成后需要自己下载文件,并不会自动发送文件哦!

支付方式: 微信支付    支付宝   
验证码:   换一换

友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

企业研究论文-联合分析方法对产品属性的应用研究.doc

企业研究论文联合分析方法对产品属性的应用研究摘要在系统分析联合分析方法一般原理的基础上,通过对闪存盘市场分析,研究了如何运用联合分析方法分析消费者的购买行为,给出了该方法运用步骤、产品属性确定等问题,并通过对闪存盘市场的实际分析得出产品特征效用函数、产关键词联合分析;产品属性;111联合分析是1964年由数理心理学家R.LUCE和统计学家J.TUKEY首先提出的。1971年由P.GREEN引入市场营销领域,成为描述消费者在多个属性的产品或服务中做出决策的一种重要方法。1978年CARMONE,YEN和JAM等人将联合衡量改为联合分析。从20纪80年代起,联合分析在许多领域中得到了广泛的认可和应用,90联合分析是通过假定产品具有某些属性,对现实产品进行模拟,然后让消费者根据自己的偏好对这些虚拟产品进行评价,并采用数理统计方法将这些属性与属性水平的效用分离,从而对每一个属性以及属性水平的重要程度做出量化评价的方法。目前,该方法已被广泛应用到新产品概念识别、竞争力分析、价格策略、12联合分析方法的基本思想是,通过提供给消费者以不同的属性水平组合形式的产品,并请消费者做出心理判断,按其意愿程度给产品组合打分、排序,然后采用数理分析方法对每个属性水平赋值,使评价结果与消费者的打分尽量保持一致,来分析研究消费者的选择行为。它可以用于评估消费者的偏好。如果产品特征是由一些属性构成,那么通过联合分析,就可以确定这些属性的哪种组合最受2为了更好地说明联合分析方法的实施步骤,本文使用了一个闪存盘的例子来21联合分析首先要对产品或服务的属性进行识别。这些属性必须是显著影响用户购买的突出属性,既不能太多,也不能太少。属性过多会加重消费者负担,或者降低模型预测的精确性;属性过少,又会因模型中丢失了一些关键信息而严重降低模型的预测能力。属性的数目一般为36确定了属性之后,还应该确定这些属性的水平,属性与属性水平的个数将决定联合分析过程中要进行估计的参数的个数,也将影响被调查者所要评价的产品轮廓个数。为了减轻被调查者的负担,同时又要保证参数估计的精度,实验需要恰当地安排属性水平的个数。一个属性的各个水平的效用函数可能是连续性的,如价格中的49元、99元和129元;也可能是非连续性的,如品牌中的朗科、金士顿、清华紫光等等。对于连续性的数据来说,如果选取的属性水平过少,该研究的信度就值得怀疑。但如果属性水平过多,又会增加研究的成本和难度。进一步的研究还表明各属性所含的水平数目应尽可能平衡,因为一个属性的水平数22联合分析将产品的所有属性与属性水平通盘考虑,并采用正交设计的方法将这些属性与属性水平进行组合,生成一系列虚拟产品。在实际应用中,通常每一种虚拟产品被分别描叙在一张卡片上。联合分析的产品模拟主要采用的分析方法由全部属性的某个水平构成的一个组合叫做一个轮廓。每个轮廓分别用一张卡片表示,如下列组合产品品牌金士顿;价格99元;容量2GB,像这样的属性水平的轮廓组合就有33327种,即消费者要对27种轮廓作评价。其实,并不需要对所有的组合产品进行评价,且在属性水平较多时实施难度也较大。在全23数据收集是联合分析的基础性工作。具体的方法有全部呈现、正交设计或者是正交加随机呈现等这要视属性及其水平多少而定。在大多数的联合分析任务中,产品轮廓是描述性的;但也可以将他们制作成图片或实物来呈现以提高实偏好的测量方法也决定了我们输入数据的形式,最主要的测量方法有排序法非定量的和评分法定量的。在联合分析方法中,因变量是购买偏好或意愿,即由受访者根据自己的购买偏好或意愿来提供数据,当然,因变量也可是实际购在测试时,要求被访问者回答,选购某种属性水平组合的闪存盘的可能等级,等级分为9等,最高等级为9分,最低等级为124从收集的信息中分离出消费者对每一属性以及属性水平的偏好值,这些偏好值也就是该属性的“效用”。计算属性的模型和方法有很多种,一般地,人们主要用最小二乘法回归模型、洛基回归LOGIT最小二乘回归模型首先需要对所有的属性及属性水平作因子分析或主效用分析设计,确定有多少显著的属性需要消费者进行评价,有多少种属性水平组合,不同的轮廓是按个体还是按集合进行分析如果是前者,每个个体的数据是要分别分析;如果是后者,应先对消费者分类,一般方法是先按个体估计分值或效用函数,然后根据分值的相似度将消费者分类,再对每类做联合分析,最后形成一个属性水平的清单和估计模型。效用函数的形式为根据表4中数据可得出所有属性水平组合的闪存盘效用值。最后整理结果如下分值范围之和[07780556][04450556][11111222]4668品牌的相对重要性1334/46680286;价格的相对重要性L001/46680214;内存的相对重要性2333/46680500把变量全部看成是定性量,利用虚拟变量和一般效用函数模型和最小二乘估计,得出的数据表明消费者对容量这一属性的偏好是最大的,也就是说,在选择闪存盘时,消费者首先考虑的是容量,其次是品牌,最后是闪存盘的价格。其中金士顿、99元、4GB25联合分析的信度一般包括时间信度(在随后的某个时间里用相同的工具重复结合测验),属性信度(当属性变化时,其中不变的属性的分值的稳定性),属性水平信度(得出的分值对于轮廓的子集的敏感性)和数据收集方法信度(分值对于数据类型、数据收集过程、因变量类型的敏感性)。常用的方法有评价模型的拟合优度(GOODNESSOFFIT),例如,如果采用的是虚拟变量回归,那么可以用R2的值来说明模型对数据的拟合程度;或者用检验一再检验法(TESTRETEST)来评价信度,即在调查后的某一阶段,让消费者重新评价某些联合分析的效度研究一般包括三种方法比较真实市场份额与通过市场模拟预测的市场份额(群体水平);预测消费者真实的购买行为,例如,消费者愿意为新产品花多少钱,在模拟的购物实验中消费者会选哪个牌子,或者哪一种商品的折扣券被选择(个体水平);预测几天后消费者的真实选择(个体水平)。在这些研究中,比较真实市场份额与市场模拟的份额的研究预测效度最高,但将它用于市场预测仍然是有难度的,因为有很多市场混淆变量的存在,诸如广告、分1评价估计模型的拟合优度。例如,如果采用的是虚拟变量回归,那么可

注意事项

本文(企业研究论文-联合分析方法对产品属性的应用研究.doc)为本站会员(doc88)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(发送邮件至[email protected]或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5