欢迎来到人人文库网! | 帮助中心 人人文库renrendoc.com美如初恋!
人人文库网
首页 人人文库网 > 资源分类 > DOC文档下载

水利工程论文-人工神经网络法预测时用水量.doc

  • 资源大小:11.70KB        全文页数:8页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:2
游客快捷下载 游客一键下载
会员登录下载
下载资源需要2

邮箱/手机号:
您支付成功后,系统会自动为您创建此邮箱/手机号的账号,密码跟您输入的邮箱/手机号一致,以方便您下次登录下载和查看订单。注:支付完成后需要自己下载文件,并不会自动发送文件哦!

支付方式: 微信支付    支付宝   
验证码:   换一换

友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

水利工程论文-人工神经网络法预测时用水量.doc

水利工程论文人工神经网络法预测时用水量摘要根据城市时段用水量序列的季节性、趋势性及随机扰动性等特点,利用人工神经网络ANN法建立了短期用水量预报模型,并采用某市时用水量的实测数据进行了建模和时用水量预测,通过与时间序列三角函数分析法、灰色系统理论预测法、小波分析法的预测结果相比较,证实该法具有预测误差小和计算速度快的特点,可满足供水系统调度的实际需要。关键词神经网络时用水量预测BP算法目前,国内外用于城市用水量短期预测的方法多为时间序列分析法并采用多种预测模型,但都存在计算比较复杂、费时、预测精度较差等问题。现通过对时用水量变化规律的研究,提出以神经网络法预测城市短期用水量。1城市供水管网用水量变化规律在我国城市供水系统中,用水量一般包括居民生活用水、工矿企业生产用水和公共事业用水等。同一城市在一天内的不同时段,用水量会发生显著变化。虽然城市用水量的变化受气候、生活习惯、生产和生活条件等诸多因素的影响,变化情况也较为复杂,但通过分析不难发现城市用水量曲线呈现三个周期性的变化,即一天24H为一个周期、一星期7D为一个周期、一年365D为一个周期,并受增长因素人口增长,生产发展的影响。若将预测时段取为1H,则季节因素和增长因素的影响就显得十分缓慢,因此管网时用水量的变化具有两个重要特征随机性和周期性。2人工神经网络模型采用目前应用最广泛的多层前馈神经网络模型BP模型来预测用水量。BP网络由输入层、输出层及隐含层组成,隐含层可有一个或多个,每层由若干个神经元组成。最基本的三层BP神经网络的结构如图1所示。隐含单元与输入单元之间、输出单元与隐含单元之间通过相应的传递强度逐个相互联结,用来模拟神经细胞之间的相互联结[1~4]。BP神经网络采用误差反馈学习算法,其学习过程由正向传播网络正算和反向传播误差反馈两部分组成。在正向传播过程中,输入信息经隐含单元逐层处理并传向输出层,如果输出层不能得到期望的输出,则转入反向传播过程,将实际值与网络输出之间的误差沿原来的联结通路返回,通过修改各层神经元的联系权值而使误差减小,然后再转入正向传播过程,反复迭代,直到误差小于给定的值为止。假设BP网络每层有N个处理单元,训练集包括M个样本模式对XK,YK。对第P个训练样本P,单元J的输入总和记为NETPJ,输出记为OPJ,则如果任意设置网络初始权值,那么对每个输入模式P,网络输出与期望输出一般总有误差,定义网络误差EPDPJ对第P个输入模式输出单元J的期望输出可改变网络的各个权重WIJ以使EP尽可能减小,从而使实际输出值尽量逼近期望输出值,这实际上是求误差函数的极小值问题,可采用梯度最速下降法以使权值沿误差函数的负梯度方向改变。BP算法权值修正公式可以表示为PJTΗF′Η取值越大则每次权值的改变越剧烈,这可能导致学习过程发生振荡,因此为了使学习因子的取值足够大而又不致产生振荡,通常在权值修正公式中加入一个势态项[5],得式中Α常数,势态因子Α决定上一次学习的权值变化对本次权值新的影响程度。3时用水量预测31方法利用BP神经网络预测时用水量分为三大步骤第一步为训练样本的准备和归一化,第二步为神经网络的训练,第三步是利用训练后的神经网络对用水量进行预测[6由于用水量的数值较大,应对其进行一定的预处理,一般可采用初值化、极值化或等比变换。通过这些变换可有效地缩短神经网络训练时间,从而加快网络32实例采用华北某市2000年24H用水量的实测数据进行预测。在应用神经网络预测模型预测时用水量时,建立了时用水量数据库,共收集了240个样本,每个样本包括24H的时用水量资料。通过选取不同的输入样本数及不同的隐层单元个数来比较其训练与预测结果的最大相对误差、均方差、程序运行时间以决定网络的结构。经过比较,最后决定采用一个隐层、12个隐层单元、24个输出单元的BP网进行训练,训练过程中均采用24H的时用水量作为输入与输出节点即OPI与OPJ由于时用水量变化具有趋势性、周期性及随机扰动性的特点,故预测样本的变化规律将直接影响预测结果的变化趋势,所以在预测时应根据预测对象的情况,选择适当的样本进行预测。①预测次日24H的时用水量或某一时刻的用水量

注意事项

本文(水利工程论文-人工神经网络法预测时用水量.doc)为本站会员(wenku)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(发送邮件至[email protected]或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5