百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

首页 人人文库网 > 资源分类 > DOC文档下载

统计学论文-基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究.doc

  • 资源星级:
  • 资源大小:22.43KB   全文页数:10页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:2
游客快捷下载 游客一键下载
会员登录下载
下载资源需要2
邮箱/手机号:
您支付成功后,系统会自动为您创建此邮箱/手机号的账号,密码跟您输入的邮箱/手机号一致,以方便您下次登录下载和查看订单。

支付方式: 微信支付       支付宝      
验证码:   换一换

友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

统计学论文-基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究.doc

统计学论文-基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究摘要本文提出了一种标准粒子滤波器的改进算法——高斯混合采样粒子滤波算法(GMSPPF)。仿真结果表明,新算法在大幅降低计算复杂度的前提下,具有比标准粒子滤波算法(SIR-PPF)更好估计性能.关键词卡尔曼滤波;粒子滤波;序列蒙特卡洛;贝叶斯滤波;高斯混合采样1引言贝叶斯方法为动态系统的估计问题提供了一类严谨的解决框架。它利用已知的信息建立系统的概率密度函数可以得到对系统状态估计的最优解。对于线性高斯的估计问题,期望的概率密度函数仍是高斯分布,它的分布特性可用均值和方差来描述。卡尔曼滤波器很好地解决了这类估计问题[1]。对于非线性系统的估计问题,最经典并得到广泛应用的方法以扩展的卡尔曼滤波为代表,这类方法需要对模型进行线性化,同时要求期望的概率密度函数满足高斯分布,然而在对实际系统建模时,模型往往是非线性非高斯的。此时,最优估计很难实现。粒子(particle)滤波器——序列重要性采样粒子滤波器,是一种适用于强非线性、无高斯约束的基于模拟的统计滤波器[2]。它利用一定数量的粒子来表示随机变量的后验概率分布,从而可以近似得到任意函数的数学期望,并且能应用于任意非线性随机系统。本文介绍一种估计性能更好的粒子滤波算法——高斯混合采样粒子滤波器(GMSPPF),相比通常意义上的粒子滤波算法(SIR-PF),GMSPPF粒子滤波器具有更小的系统状态估计的均方误差和均值。2贝叶斯滤波问题贝叶斯滤波用概率统计的方法从已观察到的数据中获得动态状态空间(DSS)模型参数。在DSS模型中,包含状态和观测两个方程[3][4]。其中状态转移方程(StateEquation)通常写作(1)这里,是已知,且是白噪声独立的随机序列,而且分布是已知的。观测方程表达式写为(2)这里:是白噪声序列,独立且分布已知。并且满足。图1描述了DSS模型中状态转移和似然函数的关系。假设初始时刻系统的状态分布已知,k时刻的已知信息序列表示。图1动态状态空间模型(DSSM)这样,贝叶斯估计的问题理解为:利用观测到的信息Yk,求解系统状态的概率分布。若系统状态的变化是隐马尔柯夫过程,即当前系统的状态信息只与上一个时刻的状态有关,可以通过预测和更新的途径求解。(3)这里:(4)假设xk,wk是相互独立的随机变量,满足。于是,参考(1)式可以把(4)式写为(5)其中

注意事项

本文(统计学论文-基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究.doc)为本站会员(docin)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(发送邮件至[email protected]或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5