会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

城市发展与铁路货运能耗的相关性实证研究.doc

  • 资源星级:
  • 资源大小:34.50KB   全文页数:12页
  • 资源格式: DOC        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

城市发展与铁路货运能耗的相关性实证研究.doc

城市发展与铁路货运能耗的相关性实证研究摘要铁路作为我国重要的货物运输方式,其能耗状况及强度变化对发展节约型交通战略具有重大意义。本文基于我国多年交通统计的实证数据,运用引力模型对交通能耗进行多重线性回归分析,并对今后以上海为端点的铁路货运能耗进行预测。关键词城市铁路能耗多重线性回归引力模型铁路作为我国重要基础设施,比较而言具有占地少、效率高、能耗低等优势,而且其强大的仓储与运输能力为保证现代物流提供了必要的条件。铁路运输主要分为货运和客运。货运商品的价值凝聚着运输的价值,商品的全生命周期能耗包含了运输的能耗,而货物运输的多寡又直接与各个城市的地理位置、人口结构、能源供需、经济发展等因素息息相关。这就建立了一条人口数量增多、经济发展客货运需求量扩大能耗增多的关系链。在保证货物供应渠道的同时,努力降低能耗成为了发展铁路交通事业的重中之重,而从城市发展角度对铁路货运量的影响因素进行深入探讨也具有广泛意义。一、中国铁路能耗运输的现状铁路机车包括三种蒸汽机车、内燃机车、电力机车。蒸汽机车主要燃料为原煤、内燃机车主要燃料为柴油、而电力机车主要使用电能。目前我国铁路列车主要有电气机车与内燃机车两种。电力机车虽然效率高,功率大,牵引性能方面优于内燃机车,但在我国的国情下,例如在供电困难且气候恶劣的地区电力是不可能完全替代内燃机车,而且内燃机车还有很大的战略意义。图11中国铁路机车能耗比例图(19802006年)单位从图11我国铁路机车能耗比例可以看出,中国铁路机车能耗品种主要为一次能源的原煤与柴油、二次能源的电力。1980年原煤消耗占比达到了90以上,1990年依然保持在70的高位,而经过了约25年的机车更新换代与不断改进,2006年原煤的消耗量几乎为0上世纪八十年代至本世纪初,我国内燃机车的柴油消耗量呈递增趋势,之后保持80左右的稳定比例。随着电气化机车逐步被推向市场,其能耗比例也呈逐年递增的态势,在2006年达到了23左右。图12铁路机车保有量及能耗因子趋势图(19852007年)单位主坐标为台数、次坐标为千克标准煤/万吨公里从图12可见,长久以来我国的蒸汽机车与内燃机车的总和基本保持在12000台左右,随着电力机车投入运营,我国总机车数达到了18000台以上。1990年以前我国蒸汽机车在数量上占比超过了50,而从90年代开始以柴油为燃料的内燃机车绝对数量和比例均保持上升的态势,并逐步取代了蒸汽机车的地位。在2000年后我国开始迅速淘汰蒸汽机车,随着我国蒸汽机车相对量和绝对量的逐年降低以及电力机车的大力推进,导致综合能耗因子(综合能耗包含客运与货运能耗)也在逐年降低,其趋势将在接下来的一定时间内将继续保持。而通过货运能耗因子与综合能耗因子的比较可以看出,长久以来客运能耗因子一直低于货运能耗因子,这也导致了铁路综合能耗因子长年低于铁路货运能耗因子,且相对变化趋势比较稳定。我国的铁路货运能耗因子在与国际先进技术水平比较时已产生了相对优势,在2006年第一次低于日本的同类数据统计。二、建构铁路货物运输能耗模型(一)模型建立的前提货物运输作为交通运输的重要组成部分,运输量随着经济发展而不断扩大。特别在工业化不断推进过程中,这个关系更加显著。本章将以上海作为铁路的一个端点,其它省级行政区作为另一个端点,根据国家统计数据构建铁路货物运输能源模型。上海市作为一个外向型城市,对它的研究需要建立在全国各省市相互联系的基础上,假设与其它各个单元省级行政区之间具有不同程度的相互吸引力。用各个省级行政区的货物运输量作为衡量货物吞吐能力的标准,以省会间相互距离作为影响相互吸引力的反作用,再套用引力模型进行多重线性回归分析。(二)铁路货物运输能耗模型的基本构造根据国家温室气体排放清单规定,铁路机车能源消耗的计算公式如下铁路机车能源消耗机车数目每列机车每日平均能源消耗每列机车每年平均运行天数铁路机车能源消耗总机车每日平均能源消耗每列机车每年平均运行天数铁路机车能源消耗总机车全年运送每吨货物行驶每公里的平均能源消耗两地间运送货物量两地间距离,即(21)所示(21)EC铁路货物运输的能耗因子(千克标准煤/万吨公里)Tiji地到j地的货物量(t),在这里i指代上海,j指代其它省级行政区diji地到j地的距离(km)为了预测区域间货物运输量我们导入引力模型。引力模型是根据1687年牛顿提出的理论物理学中万有引力公式引申而来,其内涵包括原指物体之间的相互引力与两个物体的质量成正比、与两个物体之间的距离平方成反比,不同物体间引力系数不同。物理学与社会科学的联系是非常紧密的,自20世纪30年代,美国学者赖利(W.J.REilly)将引力模型推广应用到社会科学研究的各个领域后,该模型就被作为研究空间相互作用的重要工具之一,广泛地应用在交通、旅客流量、旅游人数预测、国际贸易、区域经济等相关研究上,其得到的结论常被作为投资决策、区域规划、项目评估等的重要依据。在运用模型前,根据已有数据资料并结合实际情况进行以下假设1.用上海距离其它省会城市或自治区首府之间的铁路距离作为与各个省级行政区间的铁路运输距离,且不考虑中途机车的改道等延长运输里程的因素。2.由于台湾省、西藏没有对应的统计数据,故在本研究中不予考虑其影响。3.由于未有相关数据支撑,故使用全国统计的铁路货运的能耗因子代替上海列车货运的能耗因子。在假设前提的基础上对引力模型进行整理后,得到以下公式(22)Oii地的总铁路运输货物发出量(t)Djj地的总铁路运输货物收到量(t)等式两边取对数(22)通过多重回归分析可以拟合获得α、β、γ以及常数项lnK对应的值。OifACTiDjgACTj(23)ACTii区域的影响因素ACTjj区域的影响因素f()、g()通过回归分析得到的值诸影响因素是通过对人口、地区GDP、地区各产业GDP、人口密度等因素进行回归分析,选取影响力最大的因素。(三)各参数处理地区间距离、引力模型的参数,运输来回的货物量均采用现实统计的数据。1地区间距离使用各省的省会或首府城市间的距离计算。2引力模型的参数是以各地域的总货物发出量、总收到量、地区间距离为因变量,以货物量为自变量通过多重回归分析计算而来。3铁路发出与收到货物数的估计式。各个影响因素进行回归分析,取决定系数较大的影响因素进行组合,构成预测等式。(四)铁路货物运输量推算1.导入煤炭影响因素的验证根据23选择影响铁路货物的运输量的主要因素1有关人口的指标(总人口、城市化率、人口密度、第一产业从业人数、第二产业从业人数、第三产业从业人数)2经济发展的指标(人均GDP、第一产业GDP、第二产业GDP、第三产业GDP、平均工资、平均消费)。对以上的1和2的指标进行多重回归分析,结果见表21。为了进行验证制作残差图,见图21。表21因变量为货物发出量时的影响因素分析图21因变量为货物发出量时的标准残差图通过表21与图21可见,各系数较低,且残差较大。特别是山西省的残差非常大。试着分析其产生的原因山西省是中国最重要的煤炭产地,其产煤量非常大,且每年向其他区域的发送量多。这个因素影响了多重回归分析的结果并造成较大的残差。因而,煤的生产量对铁路货物运输量带来非常大的影响。运用同样方法可以发现河北省由于拥有庞大的冶金和化工基地,且电力耗煤较大导致原煤调入量非常大,对铁路货物的收到量产生较大影响。综合以上分析,要解释铁路货物运输量,只考虑人口与经济发展的指标是不够的,煤的指标也是影响铁路货物运输量的重要指标。煤的供需在中国经济中不可缺少,传统经验认为煤的增产以及运输能力的保证是经济发展的钥匙。2.铁路运输发出货物的影响因素方程首先将前述的各因素作为自变量总人口、城市化率、人口密度、人均GDP、第一产业从业者、第二产业从业者、第三产业从业者、平均工资、平均消费、第一产业GDP、第二产业GDP、第三产业GDP、煤炭生产量、煤炭调入量,铁路运输发出货物为因变量进行多重回归分析,建立解释铁路货物发出量的模型。通过对修正决定系数的比较,最终选定总人口、第一产业从业者、煤炭生产量三个变量作为自变量进行分析,结果如22表所示DW值通过验证,说明不存在一阶自回归。提取其中的偏回归系数和常数项组成等式(24)0铁路运输发出货物量X1总人口X2第一产业从业者X3煤炭生产量根据式24,铁路运输发出货物量与总人口、煤炭生产量呈正比关系,与第一产业从业者数呈反比关系。3.铁路运输收到货物的影响因素方程同理经过比较偏回归系数,确定了解释铁路运输收到货物量的因素总人口、第二产业从业者、第二产业GDP、煤炭调入量。结果如表23所示DW值同样通过检验,证明不存在一阶自回归现象。提取其中的偏回归系数和常数项组成等式(25)D铁路运输收到货物量X1总人口X2第二产业从业者X3第二产业GDPX4煤炭调入量根据式25,铁路运输收到货物量与总人口、第二产业GDP、煤炭调入量呈正比关系,与第二产业从业者数呈反比关系。三、上海未来铁路货物运输能源消费量预测(一)各省总人口的预测根据铁路货物发出与收到量推算模型,总人口参数在各参数中的解释力相对较强,故首先对未来人口的变化趋势进行预测。本研究的预测方法采用Logistic增长曲线模型,俗称S曲线。该模型是于1945年由比利时数学家Verhulst推导出来的,于20世纪20年代被重新发现并广泛应用。以下为Logistic方程推导过程此为Logistic方程的微分形式①y人口数A待求参数t表示时间r增长率根据牛顿莱布尼茨公式可得②③设,则得到(41)通过SPSS统计分析软件对各个省级行政区人口数的历史指标进行非线性拟合可得到A、B、r的数值,并建立各个省级行政区不同的Logistic推算方程并预测2020年人口数。(二)其它因素的推算1.煤炭调入量根据各省级行政区20002008年的平均增长率,按比例推算。2.煤炭生产量根据20002008年的平均增长率,并结合国土资源部全国矿产资源规划相关政策进行推算。3.通过观察,第一产业从业者几年来基本保持不变、第二产业从业者人数则基本随着人口增长比例变动。4.根据第二产业GDP的平均增长率,推算2020年上海第二产业GDP数。5.根据预测2020年人口数、煤炭调入、生产量、一二产业从业人数、二产GDP数可以分别预测各省级行政区收到货物总量与发出的货物总量。(三)引力模型的应用根据式(22)引力模型的对数形式进行多元回归分析,可分别相应

注意事项

本文(城市发展与铁路货运能耗的相关性实证研究.doc)为本站会员(abingge)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5