会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文资料-- Diagnosis Technology Research Of Mammographic Masses in Content-based Image Retrieval.PDF

  • 资源星级:
  • 资源大小:348.34KB   全文页数:4页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文资料-- Diagnosis Technology Research Of Mammographic Masses in Content-based Image Retrieval.PDF

DiagnosisTechnologyResearchOfMammographicMassesinContentbasedImageRetrievalSongLixin,WangQingyanCollegeofElectricalElectronicEngineeringHarbinUniversityofScienceandTechnologyHarbin,Chinalixins99yahoo.com.cnWangLiDept.ofgynecologyHeilongjianghospitalHarbin,Chinawangli1439163.comwangqingyan1984163.comAbstractInordertoassistdoctortodiagnosisofmammographicmasses,amethodisproposed.22featuresareextractedfromeachqueriedregionofinterestROI.AknearestneighborKNNalgorithmisusedtoretrievesimilarimagesfromdatabase,andfurthercalculatethemutualinformationMIbetweenthequeriedimageandtheimageswhichareintheretrievalresults,soastoimprovetheretrievalperformance.Finally,theschemetakesthefirstnineimageswiththehighestMIscoresasthefinalretrievalresults.Withthepurposeofprovidingavailabledecisionmakinginformationofdiagnosticaids,wecompareandanalyzethreecalculatingmethodsofdecisionindex.TheExperimentresultsshowthatthemethodisbetterthanmethodofusingKNNonly,andimprovetheaccuracyofdiagnosiseffectively.KeywordsmammographyimagecontentbasedimageretrievalcomputeraideddiagnosismutualinformationI.INTRODUCTIONScreeningmammographyisconsideredthemostreliableandeffectivemethodintheearlydetectionofbreastcancer.However,mammographyimageisblurryanditscontrastislowduetoimagingprinciple,manysmallerlesionsarenoteasytobeobservedandextractedowingtotheoneswhichhavebeenoverwhelmedbythenormalbreasttissue.Therefore,earlydetectionanddiagnosisofbreastcancerreliedheavilyontheradiologistssubjectiveviews.ComputerAidedDetectiontechnologyprovidesanvaluablesecondreview1forradiologistsintheearlydetectionprocessofbreastcancer.ThetraditionalCADsystemofbreastmassesdetectiongenerallybasedonartificialneuralnetwork.ThemethodofContentBasedImageRetrievalnotonlyeliminatedtheburdenofdesigningandtrainingneuralnetworkclassifiers,butalsomadefulluseofpastdiagnosisofbreastmassesoftheoriginalempiricaldata.Accordinglyitcaneffectivelyhelpphysiciansimprovetheaccuracyoftumordiagnosis.AlthoughCBIRhasbeenappliedinanumberoffields,thebreastimageswhicharecharacterizedbyhigherresolution,biggerimagesimilarityandmoreinformationaredifferentfromothers.Itisdifficulttoretrievesimilarimagewiththesamepathologicalcharacteristicsfromimagelibrary.Itisthereforeessentialtoestablisharetrievalsystemwithmedicalpractice.MammographyofCBIRisstillastudyingdirection.Someresearchinstituteshavebeencarriedoutrelevantresearch.BinZheng2hasproposedaninteractiveretrievalmethodwhichimprovedthevisualsimilaritybetweentheresultimagesandthequeriedimages.GeorgiaD.Tourassi3adoptedmutualinformationasthesimilaritymeasurementamongimages,classifiedtheregionofinterestbythemostsimilarimagesofretrieval.HilaryAlto4studiedthevariouscombinationsofshape,textureandedgesharpnessfeatures,whichusedinclassifyingbenignandmalignanttumormasses.Toimprovetheretrievalaccuracyandachievethediagnosis,thispaperstudiesacombinationofKNNMIretrievalmethodofbreastmassesdetection,andgivesadecisionindexofaideddiagnosisonthebasisofthisstudy.II.CONTENTBASEDMAMMOGRAPHICMASSESIMAGERETRIEVALAftersubmittingaqueriedROIimage,thesystemwillautomaticallyextract22featherswhichmatchthefeathersinthedatabase,obtainseveralfrontimagesaccordingtothesimilarityfromhightolow,andfinallycalculatethedecisionindexandanalyzethepathologicalinformationofmassesaccordingtotheretrievalimagesandtheirpathologicalinformation.TheoverallprocessofthemethodisshowninFig1.Figure1.ThediagramoftheoverallprocessFig.2showstheresultoftheretrieval.ThequeriedROIisintheupperleftandthepathologicalinformationisthefollowing.ThefirstnineROIsareintheleftandthelettersaboveeachROImeanclasses,Mmalignant,Bbenign.A.FeatureExtractionTheconventionalcontentbasedretrievalaimedatimprovingvisualsimilaritybetweentheretrievalimagesandthequeriedimage,butthebreastXrayimagesarevisuallyverysimilar,sofeatureselectionprocessshouldnotbebasedsolelyonthevisualsenseofthesimilarities.Doctorsalsotend9781424447138/10/25.00©2010IEEEtolikethesamekindofimagesasthesimilarimages,whichisthesimilarityinthemedicalsense.Therefore,thisfeatureselectionbasedonthefollowingprinciplesifafeatureisvalidinclassification,itisalsovalidinretrieval.Thus,themorewhicharethesamewiththequeriedimagesintheresults,themoreeffectivetheretrievalis.Figure2.TheresultoftheretrievalAfterthequeryROItobeobtained,iftocalculatetherelevantcharacteristicsofasuspiciouslump,thenitrequiressegmentationofsuspiciousmasses.Thesegmentationofsuspiciousmassesisdividedintothreestepsinthistest1.Removethebackgroundtrend5ofthequeriedROIimage2.Restraintheadjacenttissuesofsuspiciousmasses3.SegmentthesuspiciousmasswiththeimprovedMultilayerTopographicSegmentation6.Afterthat,22featuresareextractedfromeachROIasthefeatherset,includingBinZhengsetal2twelvefeathers,NicholasPetricks7sevenfeathersandRenchaoJins8threefeathers.B.SimilarityMeasurementTheimagesimilaritymeasureisthesimilaritybetweentheimagefeatures.Thesimilaritymeasurementmethodswillhaveadirectimpactontheperformanceofimageretrieval.ThispaperproposesacombinationofKNNwithMIsimilaritymatchingalgorithm.1KnearestneighboralgorithmAmultifeatureknearestneighborKNNbasedalgorithmwasappliedtosearchforthecomputationallysimilarROIsinthereferencelibrary.Similaritywasmeasuredbythedifferenceinfeaturevalues,rifxbetweenaqueriedqROIyandareferenceiROIsxinamultidimensionalnfeaturespace,21,nqirqrirdyxfyfx−∑1Thesmallerthedifferencedistance,thehigherthedegreeofthecomputedsimilarityisbetweenanytwocomparedregions.Thecomputeddistancesbetweenatestqueriedregionandeachofthestoredreferenceregionsweresortedrankorderedfromthesmallesttothelargest.ThefirstKregionsinthelistwerethenselectedastheKmostsimilarorthebestmatchedreferenceregions.Adistanceweightwasdefinedas020201,,1,qiidddyxwddd⎧⎪⎪⎨⎪≤⎪⎩Andtheclassificationscore,ortheprobabilitythataregionisactuallymalignant,wascomputedas111MiiMNijijwPww∑∑∑,KMN2WhereNisthenumberofmalignantmassregionsandMisthenumberofbenignmassregionsthatwereselectedinthesetofKmostsimilarROIs.2MaximummutualinformationmethodTheresultsretrievedbyKNNmethodarefurthermatchedbythemaximummutualinformationmethod,andthefinalresultisbetterthanothersbyusingKNNonly.Thecorrelationbetweentworandomvariablesentropy,isalsoknownasmutualinformation.Mutualinformationbetweentworandomvariablescanserveasastatisticalmeasureofcorrelation.Inthepreviousstudy,imageretrieval,mutualinformationalsohasbeenappliedtocontentbasedmedicalimageretrieval,andhasachievedrelativelygoodresults.GiventwoimagesXandY,theirMIIXYisexpressedas2,,,logxyxyxyxyPxyIxyPxyPxPy∑∑3WherePXYx,yisthejointprobabilitydensityfunctionPDFofthetwoimagesbasedontheircorrespondingpixelvalues.PXxandPYyarethemarginalPDFs.Thebasicideaisthatwhentwoimagesarealike,themoreinformationXprovidesforYandviceversa.Therefore,theMIcanbethoughtasanintensitybasedmeasureofimagessimilarity.IfthequeryimageXandastoredimageYdepictsimilarstructures,thenthepixelvalueinimageXshouldbeagoodpredictorofthepixelvalueatthecorrespondinglocationinimageY.Consequently,theirMIshouldbehigh.AsshowninEq.3,theMIestimationoftwomammogramphicROIsrequirescomputationofthejointandmarginalPDFs.Wefollowedthehistogramapproach9forthetask.SincetheimagesofDigitalDatabaseforScreeningMammographyDDSMconsideredinourstudyare12bitimages,thePDFswereestimatedusingareducednumberof256equalsizedintensitybinstoavoidpotentialoverestimationerrors10.ThisisatypicalpracticeforMIestimationinimageregistration.C.DecisionIndexBesidestheretrievedROIimages,thedecisionindexDIindicatingtherelativeprobabilitythataROIcontainsamasscanbecalculatedautomaticallywithaformulaandoutputtotheuser.AhigherDIvaluemeansahigherprobabilitythattheROIcontainsamass.TheformulaforcalculatingtheDIisbasedonthemethodsproposedbyGeorgiaD.Tourassietal3.1211{,1}{,1}{,1}MQIIIQMNQIIQJJIJSYXKRXDIYSYXKRXSYXKRX−−−∑∑∑4WhereMisthenumberofimagesretrievedfromthedatabasethosecontainmassROIs.NisthenumberofimagesretrievedfromthedatabasethosecontainnormalROIs.KMN.RankXIistheorderingnumberofXIwhentheretrievedROIimagesaresortedindescendingorder.Itcanbeseenthatforeithermethod,thehigherDImeansahigherprobabilitythattheROIcontainsamass.DI2consideredthefactoroforderingnumberofXIandassignedarighttoeachofsimilaritymeasurevaluesanditgivesabetterperformanceinourevaluationexperiments,sowetakeitasourinitialdecisionindex.III.EXPERIMENTALRESULTSANDANALYSISROIintheimagedatabasecomesfromDDSMofUniversityofSouthFlorida.TheROIdatabaseincludes514malignantROIsand321benignROIs.EachROIisillustratedinanimagewithsizeof125125pixels.Thedepthofimageis12bits.EachROIcontainsatmostonemass.NomassintheROIweextractedisonthechestwall.Recallrateandprecisionrateisthestandardinformationretrievalevaluationmethod.ThenumberofimagesreturnedKtakesaveryimportanteffectfortheperformanceofKNNretrievalsystem.TheaverageprecisionratewillbecalculatedtoobtainanoptimalKvalue.FromFig.3itisconcludedthatprecisionrateisnotmuchdifferentforthedifferentKvalues.However,consideringthemutualinformationmatchingfortheresults,therelativelysmallandtheprecisionvalueslightlyhighKisselected,K25.Figure3.TheaverageprecisionofdifferentKvaluesAthresholdvalueisusedasadividingpointbetweenbenignandmalignantmasses,andtheFig.4showsthedistributionofbenignandmalignantmassesofdecisionvaluesinthedatabase.Thereisnocleardemarcationpointbetweenthemassesfromthehistogram.Thus,athresholdvalueshouldbedefinedbetween0and1.TheERRORRATEisdefinedbythenumberofmalignantROIofDI<TandthenumberofbenignROIofDI≥T,accordinglybythenumberofwrongdecisionunderT.ItischangingwithT,andcanbefoundoutbyExhaustiveAttackmethod.Figure4.ThehistogramofdecisionindexThenareceiveroperatingcharacteristicROCcurvecanbeplottedtoevaluatetheperformanceofusingoursystemtoclassifybetweentruepositiveandfalsepositivemassregions.TheareaunderROCcurveAUCvalueisusedastheindexofperformance.Theleaveoneout11samplingschemeandtheROCcurveanalysisareusedfortheassessmentofoursystem.EachtimeaROIimageischosenfromthedatabaseFigure5.TheROCcurveoftwomethodsindifferentDiesasthequeryROIimage,thentherestROIimagesformatestdatabase.Theprocedureisperformedrepeatedly,eachtimeaROIimageinthedatabaseischosenasaqueryimage.Fig.5showedtheROCcurveoftwomethodsindifferentDies.Tab.IshowedtheAZvaluesoftwomethodsindifferentDies.AnalysingandcomparingthisthreemethodsDI1addssomeeffectsofsimilarityonthebasisofsequence.PandDI2arebasedonweightedsumofthereciprocalsquareofthedistanceasthemainbasisforsimilaritymatching.DI2addedtheweightedsumofsequencesimilarityplaysacertainroleinimprovingdetectionaccuracyrate.ItcanbeshowedfromTab.IthatDI2isobviouslybetterthantheothers,themethodofKNNMIisbetterthanmethodofusingKNNonly.TABLEI.THEAZVALUESOFTWOMETHODSINDIFFERENTDIESDI1PDI2KNN0.7084±0.01830.7353±0.01740.7452±0.0171KNNMI0.7198±0.01780.7612±0.01660.7984±0.0154EachmammographicimageinDDSMdatabasecontainspathologydiagnosticinformationoflocationofalesion,whichisgivenbyseveralradiologistsbasedontheirexperiencesofyearsinthediagnosis.Then,intheROIresults,weextractedpathologyinformationforeachROIrespectivelyfromthepathologymessagedata,includingDensity,Shape,Margins,Assessment,Subtlety,etc.Tab.IIshowsthatthecomparativeprecisionineachpathologicalinformationintwomethods.TABLEII.THEPRECISIONOFEVERYPATHOLOGYINFORMATIONINTWOMETHODSDensityShapeMarginsAssessmentSubtletyKNN62.1570.5871.4667.2572.53KNNMI65.4876.9778.6561.3669.57ItisclearfromthesedatathatthereisacertaindifferenceButingeneralnotintwodifferentretrievalmethodsforthedifferentpathologicalinformation.Therefore,themethodofKNNMIcanbringagreatreferencevalueforadoctorinthepathologicaldiagnosisandprovideagreathelptotheearlydiagnosisofbreastmasslesions.IV.CONCLUSIONSAmethodforcomputeraideddetectionCADofmammographicmassesisproposedandaprototypeCADsystemispresented.ThesystemcanautomaticallyevaluatethepossibilitythataROIismalignantorbenignbyretrievingsimilarROIimagesfromthedatabaseandcalculatingtheDIvalueforeachROI.ThesystemperformanceisevaluatedusingtheleaveoneoutsamplingschemeandROCcurveanalysismethodbasedontheDIsoutputbytheprototypesystem.CBIRbasedCADisausefulmethodforcomputeraideddetectionofmammograhpicmasses.ACKNOWLEDGMENTSTheworkwassupportedbyNaturalScienceFoundationofHeilongJiangProvinceF200912.REFERENCESS1L.J.WarrenBurhenne,S.A.Wood,C.J.DOrsi,S.A.Feig,D.B.Kopans,etal,Potentialcontributionofcomputeraideddetectiontothesensitivityofscreeningmammography,Radiology,vol.215,no.2,pp.554562,2000.2Z.Bin,A.Lu,L.A.Hardesty,J.H.Sumkin,C.M.Hakim,etal.Amethodtoimprovevisualsimilarityofbreastmassesforaninteractivecomputeraideddiagnosisenvironment,.MedicalPhysics,vol.33,no.1,pp.111–117,2006.3G.D.Tourassi,R.VargasVoracek,C.E.Floyd.Contentbasedimageretrievalasacomputeraidforthedetectionofmammographicmasses,InProceedingsofSPIE,5032,pp.590–597,2003.4H.Alto,R.M.Rangayyan,J.E.L.Desautels.Contentbasedretrievalandanalysisofmammographicmasses,JournalofElectronicImaging,vol.14,no.2,pp.023016–1–17,2005.5M.Aoyama,Q.Li,S.Katsuragawa,F.Li,S.Sone,etal.ComputerizedschemefordeterminationofthelikelihoodmeasureofmalignancyforpulmonarynodulesonlowdoseCTimages,MedicalPhysics,vol.30,no,3,pp.387–394,2003.6B.Zheng,Y.H.Chang,D.Gur.ComputerizedDetectionofMassesinDigitizedMammogramsUsingSingleImageSegmentationandaMultilayerTopographicFeatureAnalysis,AcadRadiol,vol.2,no.11,pp.959–966,1995.7N.Petrick,H.P.Chan,D.Wei,B.Sahinet,M.A.Helvie,etal.Automateddetectionofbreastmassesonmammogramsusingadaptivecontrastenhancementandtextureclassification,MedicalPhysics,vol.23,no.10,pp.1685–1695,1996.8R.C.Jin,B.Meng,E.M.Song,X.Y.Xu,L.Jiang,ComputeraidedDetectionofMammographicMassesBasedonContentbasedImageRetrieval,Proc.ofSPIEVol.6514,65141W,2007.9F.Maes,A.Collignon,D.Vandermeulen,G.Marchal,G.Suetens,Multimodalityimageregistrationbymaximizationofmutualinformation,IEEETrans.Med.Imag.,vol.16,pp.187–198,1997.10A.Treves,A.Panzeri,Theupwardbiasinmeasuresofinformationderivedfromlimiteddatasamples,NeuralComputation,vol.7,pp.399–407,1995.11B.Efron,R.J.Tibshirani,AnIntroductiontotheBootstrapM.NewYorkCRCpress,pp.141–150,1993.

注意事项

本文(外文资料-- Diagnosis Technology Research Of Mammographic Masses in Content-based Image Retrieval.PDF)为本站会员(美女来了)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5