会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文资料--Numerical Simulation Method of Acoustic Field Positive Problem based on Magnetoacoustic Tomography with Magnetic Induction.PDF

  • 资源星级:
  • 资源大小:319.56KB   全文页数:4页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文资料--Numerical Simulation Method of Acoustic Field Positive Problem based on Magnetoacoustic Tomography with Magnetic Induction.PDF

NumericalSimulationMethodofAcousticFieldPositiveProblembasedonMagnetoacousticTomographywithMagneticInductionHuiXia1,GuoqiangLiu1,YanhongLi1,YangZhang1,ShiqiangLi1andLaifuZhang21.InstituteofElectricalEngineering,ChineseAcademyofSciencesBeijing,China2.ShanxiElectricPowerResearchInstituteShanxi,Chinaxiahuimail.iee.ac.cnAbstractMagnetoacousticimpedancetomographywithmagneticinductionMATMIisanewimagingmethod.Itsimagesreflectconductivitydistribution.Inthispaper,wefirstlyproposedthenumericalsimulationmethodofmultiphysicsfieldscouplingtoobtainthedistributionofacousticfieldinMATMIwithoutthestaticmagneticfield.Simpleacousticdetectionexperimentsareconductedtovalidatethealgorithm.Theresultsdemonstrateditsfeasibility,andmayprovidesometheoreticalfoundationforthefurtherresearchontherealtimedetectionofacousticsignalsandthereconstructionmethodoftheMATMI.KeywordsmagnetoacoustictomographywithmagneticinductionMATMI,Multiphysicsfieldscoupling,twodimensionalaxisymmetricmodel,numericalsimulationofacousticfieldI.INTRODUCTIONAsakindoffunctionalimaging,ElectricalimpedancetomographyEIThasmanypredominancecomparedwithconventionalimagingmeans,suchasnoninvasivediagnose,highimagingqualityandsoon.ButEIThasnotbeenusedinclinicalapplicationbecauseofitslowresolutionnow13.Inordertoresolvetheproblem,MagnetoacoustictomographywithmagneticinductionMATMIisproposedbyBinHeetal4,whichisshowninFig.1.InMATMI,imagingtargetisplacedinastaticmagneticfieldwithpulsedmagneticstimulationimposedonit,thepulsedcurrentinduceseddycurrentinthesample,andtheinducededdycurrentinstaticmagneticfieldgeneratesLorentzforce.TheLorentzforcecausesacousticvibration,andthegeneratedacousticwavecanbemeasuredaroundthesampletoreconstructtheconductivitydistributionofthesample.Figure1.TheillustrationofMATMIquotedfrom4OnthebasisoftheprincipleMentionedabove,weproposeanewnonstaticmagnetMATMImethod.Inthispaper,weanalyzetheprinciplesofmultiphysicsfieldscoupling,includingthetwodimensionalaxisymmetrictransientelectromagneticfield,displacementfield,soundfield,andputforwardthemethodofmultiphysicscalculations.Onthebasicofaboveall,theformulaforcalculatingthevariousfieldsarederivedindetail,andconductthesimpleacousticdetectionexperimentstovalidatethemethod.II.THENUMERICALSIMULATIONMETHODOFMULTIPHYSICSFIELDSCOUPLINGThemethodadoptsimpulsingpowersourceasthedrivingsource,excitingcoilgeneratesalternatingelectromagneticfieldwhichexcitesLorentzforceinthesample.TheLorentzforcecausesvibrationofsampleboundary,thenacousticwavesisexcitedintheair.Wecaninversethesampleresistivitybydetectingacousticwavesignal.Thesoundfielddistributionofthesamplecanbesimulatedthroughsolvingthemultiphysicalequationwhichincludeselectromagneticequation,wienerequationofelasticsolidsandsoundfieldequationintheair.A.TheequationofaxisymmetricelectromagneticfieldsTheexcitingcoilishollowcylindricalcoil,androundcoppersheetisselectedasthesample,thesimulationmodelhasaxialsymmetry,sothevectormagneticpotentialAKonlyhascircumferentialcomponent,labeledasA,thecorrespondingaxisymmetricelectromagneticequationis22s2A1AAAAJrrrrzt∂∂∂∂−−µσ−µ∂∂∂∂1Whereµismagneticpermeability,σiselectricalconductivity,andsJiscurrentdensityoftheexcitingcoil.Althoughthecurrentdensityoftheexcitingcoilgeneratesonlycircumferentialcomponent,magneticfluxdensityincludesradialandaxialcomponent,wecangetAJt∂−σ∂9781424447138/10/25.00©2010IEEErABz∂−∂zAABrr∂∂2Inordertoavoidthesingularityattheboundarywhichrequalstozero,sosupposeuistheratioofAandr,thentheEq.2becomes222suuuuur3rrrJrrztt∂∂∂∂∂−µσ−µε−µ∂∂∂∂∂3OnbothsidesoftheEq.3aremultipliedby2r,wecanget222323332suuuuur3rrrrJrrrztt∂∂∂∂∂−µσ−µε−µ∂∂∂∂∂4Ifnotetherandzforxandyrespectively,weget233332s2uuuuxxxxJxxxyytt⎛⎞∂∂∂∂∂∂⎛⎞−µσ−µε−µ⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠5FromtheEq.5,wecansee⎟⎟⎠⎞⎜⎜⎝⎛∂∂∂∂⎟⎠⎞⎜⎝⎛∂∂∂∂yuxyxuxx33isthe3ux∇⋅∇underrectangularcoordinatesystem,wecanget23332s2uuxuxxJxtt∂∂∇∇−µσ−µε−µ∂∂6AccordingtothesolvingrangeoftheFig2a,wecanseethatΩ1istheairrange,Ω2isthesampleposition,Ω3istheexcitingcoilposition.IntheΩ1area,conductivityequalszero,andthereisnoexcitingsource.IntheΩ2area,thereisalsonoexcitingsource.IntheΩ3area,thecurrentinthecoilisthesourcecurrent.Thenequationofthethreesolvingareascanbewroterespectively3xu0∇−∇7−133uxux0t∂∇−∇µσ∂7−232sxuJx∇−∇µ7−3Atthesymmetryaxisandinfinityboundary,theboundaryconditionisthatuequalszero.So,afterobtainingtheu,substitutingrAU/intoEq.1,wecangetelectricfieldintensityandmagneticfluxdensityAuErtt∂∂−−∂∂,ruBrz∂−∂,zuBr2ur∂∂81Ω2Ω3Ω2Γ3Γ2Ω3Ω2Γ3Γ1Γ1Ω2Ω3Ω2Γ3ΓFigure2.Solvingmodels(aElectromagneticfieldsolvingmodel(bdisplacementfieldsolvingmodel(cSoundfieldsolvingmodelBasedonEq.8,wecanget.sFJBKKK9B.AxisymmetricNavierequationsofelasticsolidsAcordingtothetheoryofcontinuummechanics,thewienerequationofelasticsolidcanbederivedthroughusingmomentumconservationprinciple,lawofconservationofmassandconstitutiveequationofmechanicalpropertiesinaninertialreferenceframe.Thevectorformofthewienerequationcanbewroteas222uGGuuFt12v∂ρ∇∇∇⋅∂−KKKK10Whereuurzt,,Kisdisplacementfield,FKisunitvolumeforce,ρisdensityofcoppersheet,Gisshearmodulus,andvisPoissonsratio.Underthecylindricalcoordinates,Eq.10canbewrote22rrrr22uuGGuF12rrt∂∂θ⎛⎞∇−ρ⎜⎟−ν∂∂⎝⎠10−122zzz2uGGuF12zt∂∂θ∇ρ−ν∂∂10−2rrzuuuurrz∂∂θ∇10−3Where2ru∇、2zu∇、r∂θ∂andz∂θ∂canbewrote222rrrr22uuu1urzrr∂∂∂∇∂∂∂11−1222zzzz22uuu1urzrr∂∂∂∇∂∂∂11−2rzrr2uuuu1rrrzrrr∂∂∂∂θ∂⎛⎞−⎜⎟∂∂∂∂∂⎝⎠11−3rzruuu1zzrzrz∂∂∂∂θ∂⎛⎞⎜⎟∂∂∂∂∂⎝⎠11−4Inordertovoidthesingularityattheboundary,supposeorruur,andsubstitutingroruuintoEq.101,andOnbothsidesoftheequationmultipliedbythe2r,wecanget22323ororor22223orzr22G1uuur3rGr12rrzuuGrFr12rzt−ν⎛⎞∂∂∂⎜⎟−ν∂∂∂⎝⎠∂∂ρ−ν∂∂∂12Thesolvingrangeisshowninfigure2b,theboundaryconditionscanbewroteatthe2Γand3ΓsFnp−KK13WheresnKisunitnormalvectorwhichpointingtheoutsideofthesampleorcoil.C.AxisymmetricacousticwaveequationIntheexperiment,becausethereisnoLorentzforceintheair,theacousticwaveequationinthesolvingrangeofFig2ccanbewroteas222210ppct∂∇−∂14Inthecylindricalcoordinate,wecanget2222222110∂∂∂∂−−−∂∂∂∂ppppctrrrz15Wheretheboundaryconditionisr0attheaxisofsymmetry,andp0attheinfinitepoint.Onthe2Γand3Γ,theboundaryconditionareasfollows,22unpnt∂⋅∇⋅∂KK16AccordingtotheEq.10Eq.16,wecansolvethesoundwavedistributioninthesoundfieldofthesample.III.EXPERIMENTSA.SimulationexperimentInthesimulationprocess,thewaveformofexcitingcurrentcanbeshownasfollow0sin−tVItetLαωω17wheredischargevoltage0V1000V,inductionL7.7μH,resistanceR8.06e3Ω,capacityC200μF,αR/2L,21/LCωα−.Inthecourseofpracticalapplication,thecurrentwaveformisinterceptedbyathyristor,andonlyreservesthefirstpositivespike.Theimpulsewidthisabout120μS,numericalsimulationresultofsoundfielddistributionat60μSisshownbelowinFig.3.Figure3a.Atthetimeof60μs,soundfielddistributionoftheexcitingcoilitselfFigure3b.Atthetimeof60μs,soundfielddistributionofthesampleFromtheFig.3a,wefindthatthesoundfielddistributionofexcitingcoilcanbeapproximatelyconsideredasacircularringwhosecenteristhecoilstheinsideandoutsideboundaries,andatthesymmetryaxis,thesoundfieldisthestrongest.Atthesametime,wefind,inthedisplacementy0,theacousticsignalstrengthgeneratedbycoilitselfisweak,itcanbeshieldedbymeansofsomemeasuresthatcaneffectivelyeliminatetheinfluenceofacousticsignalgeneratedbythecoilitself.0.000000.000030.000060.000090.0001225000020000015000010000050000050000100000150000Signalintensity/a.uTime/s0.00050.0010.0020.0050.0080.01Figure4a.Atx0,thesimulationacousticsignal0.000000.000030.000060.000090.000122000001000000100000Signalintensity/a.uTime/s00.00050.0020.0050.010.15Figure4b.Aty0.0005,thesimulationacousticsignalInFig.3b,wecanseethatsoundfielddistributionconcentratearoundtheaxisofsymmetry.Inordertofurtherunderstandthecharacteristicsofacousticsignals,weselectthedifferentcoordinatepointstosimulatetheacousticsignal,andthetimestepsetto10μS.Afterachievingtheacousticsignalofthevariouspoint,thecontinuous120μSdataweresegmentedinto0.1μSepochsforFFTtransformandobtainthesignalfrequency.Intheaxisofx0,weobtainthesimulationacousticsignalshowninFig.4a,andintheaxisofy0.0005m,weobtainthesimulationacousticsignalshowninFig.4b.Afteranalysisandcalculation,wefindthatthefrequencyofacousticwavesignalmainlyconcentrateintherangeof35KHzinthesphericalsoundfieldrangewhosecenteristhesamplescenterandradiusisapproximately0.005m.B.AcousticdetectionexperimentWeadopttheexperimentalsystemtodetectthesoundfieldofthecoppersheetsample.Withregardtoadetaileddescriptionoftheexperimentcanrefertoliterature5.Inthesphericalsoundfieldrangewhosecenteristhesamplescenterandtheradiusisapproximately0.005m,theacousticsignalunderexcitationisdetected.ThenweprocessthedetectedsoundsignalbyFFT,andobtainsignalspectrum.TheacousticsignalofmeasurementpointtisshowninFig.5.Figure5.DetectedacousticwavesignalanditsspectrumAftermultipointmeasurementandanalysis,wefindthatthefrequencyofdetectedsoundwavesignalmainlyconcentrateinthespectrumrangeof35KHz,itisconsistentwiththesimulationresults.Itprovesthatthesimulationmethodofmultiphysicalfieldcouplingiscorrect,themethodofMATMIisfeasible.IV.CONCLUSIONMedicalimagingisaresearchdomainwithbroaddevelopmentprospect,itisessentialtotheadvancementofmedicineandimprovementofpeopleslife.Inthispaper,ourmethodshowsthatitispossibletocompletetwodimensionalaxisymmetricacousticwavepositionproblemofMATMIwithoutthestaticmagneticfield.ItcanbeseenasthetheoreticalreferenceforthefuturestudyonMATMI.ACKNOWLEDGEMENTSTheauthorsthanktheNationalNaturalScienceCouncilofChinaforfinancialsupportGrantNo.60802086,50977084,FoundationofChinaPostdoctorGrantNo.20090450570,BeijingNovaProgramGrantNo.2009B48andtheNationalHighTechnologyResearchandDevelopmentCouncilofChinaGrantNo.2007AA06Z212.REFERENCES1V.Cherepeninetal.A3DelectricalimpedancetomographyEITsystemforbreastcancerdetectionJ,Physiol.Meas.,2001.221,918.2J.P.MorucciandB.Rigaud.BioelectricalimpedancetechniquesinmedicinepartIIIImpedanceimagingthirdsectionMedicalapplicationsJ.Crit.Rev.Biomed.Eng,1996.24466556773A.D.Seagar,D.C.Barber,B.H.Brown.TheoreticalLimitstoSensitivityandResolutioninImpedanceImagingJ.Clin.Phys.Physiol.Meas.,1987.81331.4X.Yuan,B.He.MagnetoacousticTomographywithMagneticInductionMATMIJ.Phys.Med.Biol.,2005.5051755187.5H.Xia,G.Liu.etal.ImagingMethodofNewMagnetoacousticImpedanceTomographywithMagneticInductionProcedingsofsecondinternationalconferenceonSportsScienceandSportsEngineeringSSSE2009,99103

注意事项

本文(外文资料--Numerical Simulation Method of Acoustic Field Positive Problem based on Magnetoacoustic Tomography with Magnetic Induction.PDF)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5