欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文资料--Squeal analysis of gyroscopic disc brake system based on finite element method.pdf

    • 资源ID:93300       资源大小:1.07MB        全文页数:11页
    • 资源格式: PDF        下载积分:1积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文资料--Squeal analysis of gyroscopic disc brake system based on finite element method.pdf

    syonalMode-couplinginstabilityForentemsmatrixsystetorsionmodeofthedisc.&2009ElsevierLtd.Allrightsreserved.atedinformationthrouerviewpublishedofautmajoranalysis.cularly,Huangetal.6usedtheeigenvalueperturbationmethodsolutionformode-mergingbetweendiscdoubletmodepair.Duethecopice.uealbrake,forexample,thein-planemodeandhatmodeofthedisc.ARTICLEINPRESSContentslistsavailableofInternationalJournalofMechanicalSciences51(2009)284294describingthecontactkinematicsundertheundeformedconfig-tothestationarydiscassumption,thefiniteelement(FE)methodhasbeeneasilyimplementedasreferredtothereviewarticle2.Alternately,Caoetal.13studiedthemovingloadeffectfromaFEdiscbrakemodelwithmovingpads,wherethediscwasInthispaper,themethodologyofconstructingarotatingFEdiscbrakemodelisdeveloped.Consequently,itenablesustoexaminethesquealmechanismsinthephysicalFEbrakemodelsubjecttorotationeffects.Theglobalcontactmodel10urationisutilizedtodevelopcontactmodelingbetweentherotatingdiscandtwostationarypads.FromtheassumedmodeE-mailaddress:jkangkongju.ac.kr0020-7403/$doi:10.1todevelopthenecessaryconditionformode-mergingwithoutthedirecteigensolutions.Kangetal.7derivedtheclosed-formmechanismssincetheannularplateapproximationdoesnotrepresentallofmodalbehaviorsexistingonthephysicaldiscbrakesystem912,14.Thestabilityanalysisatthestaticsteady-slidingequilibriumofthestationarydiscandpadsprovidesthesquealmechanismasmode-mergingcharacterinthefrictionfrequencydomain.Parti-annularsectorplates.Thecomprehensiveanalysisexplainedstabilitycharacterinfluencedbymode-couplingandgyroseffect,andprovidedthephysicalbackgroundontheapproxima-tionsandmechanismsusedintheprevioussquealliteraturHowever,itstillcontainslimitationsonexaminingbrakesqequationsofmotion,therealpartsofeigenvalueshavebeencalculatedfordeterminingtheequilibriumstability.Intheliterature,therearetwomajordirectionsonthelinearsquealanalysis:thecomplexeigenvalueanalysisofthestaticsteady-slidingequilibrium38andthestabilityanalysisofrotatingmodeling,however,arotatingFEdiscbrakemodelhasnotbeendevelopedyet.Recently,Kangetal.14developedatheoreticaldiscbrakemodelinthecomprehensivemanner.Thediscbrakemodelconsistsofarotatingannularplateincontactwithtwostationary1.IntroductionDiscbrakesquealhasbeeninvestigforseveraldecades.MuchvaluablemechanismshasbeenaccumulatedKinkaidetal.1presentedtheovbrakesquealstudies.Ouyangetal.2focusedonthenumericalanalysissqueal.Theyhaveshownthatonesquealstudyisthelinearstability-seefrontmatter&2009ElsevierLtd.All016/j.ijmecsci.2009.02.003bymanyresearchersonsquealghouttheresearch.onthevariousdiscthereviewarticleomotivediscbrakeapproachonbrakeFromthelinearizedstationary,andtherefore,thegyroscopiceffectswereneglected.Gianninietal.15,16validatedthemode-mergingbehaviorassquealonsetbyusingtheexperimentalsquealfrequencies.Ontheotherhand,thestabilityofarotatingdiscbrakehasbeeninvestigatedintheanalyticalmanner.Therotatingdiscbrakesystemhasbeenmodeledasaring10andanannularplate12inpointcontactwithtwopads,andanannularplatesubjecttodistributedfrictionaltraction9.Withinclusionofgyroscopiceffect,therealpartsofeigenvalueshavebeensolvedwithrespecttosystemparameters.DuetothecomplexityoftherotatingdiscSquealanalysisofgyroscopicdiscbrakeonfiniteelementmethodJaeyoungKangDivisionofMechanicalandAutomotiveEngineering,CollegeofEngineering,KongjuNatiarticleinfoArticlehistory:Received9October2008Receivedinrevisedform30January2009Accepted12February2009Availableonline9March2009Keywords:GyroscopicDiscbrakeBrakesquealabstractInthispaper,thedynamicstationarypadsisstudied.structurebythefiniteelemandmovingcoordinatesystcorrespondinggyroscopicmethod.Thedynamicinstabpredictedwithrespecttospeeddependsonthevibrationthenegativeslopeoffrictionjournalhomepage:www.elsevierInternationalJournalrightsreserved.stembasedUniversity,Cheonan-Si,RepublicofKoreaofacarbrakesystemwitharotatingdiscincontactwithtwoactualgeometricapproximation,thediscismodeledasahat-discshapemethod.Fromacoordinatetransformationbetweenthereference,thecontactkinematicsbetweenthediscandpadsisdescribed.Theofthediscisconstructedbyintroducingtheuniformplanar-meshilityofagyroscopicnon-conservativebrakesystemisnumericallymparameters.Theresultsshowthatthesquealpropensityforrotationmodesparticipatinginsquealmodes.Moreover,itishighlightedthatcoefficienttakesanimportantroleingeneratingsquealinthein-planeatScienceDirect.com/locate/ijmecsciMechanicalSciencesmethod,theequationsofmotionofthefriction-engagedbrakesystemarederived.Thenumericalresultsdemonstrateseveralsquealmodesandexplainthecorrespondingsquealmechanisms.2.DerivationofequationsofmotionThediscpartofabrakesystemismodeledasahat-discshapestructureasshowninFig.1.Thehat-discissubjecttotheclampedboundaryconditionattheinnerrotatingshaftandthefreeboundaryconditionattheouterradius.Owingtothecomplexityofthegeometry,thefiniteelementmethodisutilizedformodalanalysis.Thediscrotationwithconstantspeed(O)generatesfrictionstressesoverthecontactwithtwostationarypadsloadedbypre-normalload(N0).Thefrictionmaterialofthepadismodeledastheuniformcontactstiffness(kc),wherecontactstressesaredefinedontheglobalcontactmodel.Centrifugalforceisneglectedduetotheslowrotationinthebrakesquealproblem.Inordertodescribethecontactkinematics,thedisplacementvectorsofthediscandtoppadareexpressedinthereferencecoordinates(Fig.2),respectively,suchthatuðr;y;z;tÞ¼uðr;y;z;tÞerþvðr;y;z;tÞehþwðr;y;z;tÞez(1)up1ðr;y;z;tÞ¼up1ðr;y;z;tÞerþvp1ðr;y;z;tÞehþwp1ðr;y;z;tÞez(2)ARTICLEINPRESSConnectedwithcontactstiffnessoNoNConnectedwithcontactstiffnessClampedataninnerZrotatingshaftFig.1.Hat-discbrakesystem.tXeZreckNeutralsurfaceRotorpartFig.2.Coordinatesystemoftherotatingdisc,reference(y)andlocal(c)coordinates.BottomsurfaceofthetopPad:contactarea(Ac)Pw1pRw1pRv1pRuPuPvZPRJ.Kang/InternationalJournalofMechanicalSciences51(2009)284294285SegmentofundeformedtopsurfaceofthediscFig.3.ContactkinematicsatacontactpointP(orP0)intheglobalcontactmodel:(a)contactcontactwithPofthedisc.wherethesuperscripts,p1andp2denotethetopandbottompads,respectively,andthediscdisplacementisalsodefinedinthelocalcoordinates(Fig.2):uðr;c;z;tÞ¼uðr;c;z;tÞerþvðr;c;z;tÞehþwðr;c;z;tÞez(3)AsshowninFig.3,thecontactpointP0offrictionmaterialofthetoppadisassumedtobeincontactwithPofthediscandlaterallyfixedwithRofthetoppad,whichresultsinup1P0ðr;y;tÞ¼up1Rðr;y;tÞerþvp1Rðr;y;tÞehþwPðr;y;tÞez(4)Thevelocityvectorsofthediscandtoppadareobtainedfromthefollowingtime-derivatives.First,thepositionvectorsofthediscareexpressedinthelocalcoordinatesasr¼ðrþuÞerþvehþðzþwÞez(5)rP¼rjz¼h=2(6)Fordescribingthedirectionvectoroffrictionforce,thecontactvelocityvectorofthediscisderivedbytakingthetime-derivative1ppo+kc(wPwR)ZDisc1Nze1Nzeck1F1FPRPdisplacements;(b)contactforces.P0offrictionmaterialofthetoppadisinARTICLEINPRESSinEq.(6)inthereferencecoordinates:VP¼DrPDt(7)wherethecoordinatetransformationisgivenbythedifferentia-tioninthelocalcoordinatessuchthatDuðr;c;z;tÞDt¼uðr;y;z;tÞtþOuðr;y;z;tÞy(8)Dvðr;c;z;tÞDt¼vðr;y;z;tÞtþOvðr;y;z;tÞy(9)Dwðr;c;z;tÞDt¼wðr;y;z;tÞtþOwðr;y;z;tÞy(10)Sincethebrakepadisstationary,thecontactvelocityvectoratP0ofthetoppadissimplythepartialtime-derivativeofEq.(4):Vp1P0¼up1Rterþvp1RtehþwPtez(11)FromCoulombslawoffriction,contactfrictionforceisexpressedasF1¼C0m1C1N1VreljVrelj(12)wherethenormalloadisthesumofpre-stress(p0¼N0/Ac)andthenormalloadvariation:N1¼p0þkcðwPC0wp1RÞ(13)andtherelativevelocityattopcontactisgivenbyVrel¼VPC0Vp1P0(14)Inordertocapturethenegativeslopeeffect,thecontinuousfrictioncurve14isusedsuchthatm1ðtÞ¼fmkþðmsC0mkÞeC0ajVreljgr¼rctr(15)wherems,mkandaarethecontrolparametersdeterminingthemagnitudeandtheslopeofthefrictioncoefficient,andthefrictioncoefficientisassumedtobeuniformandcalculatedatthecentroidofthecontactarea(rctr).ThetransversevibrationsofthediscandpadcomponentsareexpressedinthemodalexpansionformofN¼ðNdþ2NpÞtruncatedmodesusingtheassumedmodemethod:wp1ðx;tÞXNpn¼1jp1z;nðxÞqp1nðtÞ(16)wðx;tÞXNdn¼1jz;nðxÞqnðtÞ(17)wp2ðx;tÞXNpn¼1jp2z;nðxÞqp2nðtÞ(18)whereNdandNparethenumbersofthetruncatedmodesofthediscandthepad,respectively,andwhereqp1¼fqp11qp12.qp1Npg(19)q¼fq1q2.qNdg(20)qp2¼fqp21qp22.qp2Npg(21)jp1z;nðxÞ,jz;nðxÞandjp2z;nðxÞarethenthtransversemodeshapeJ.Kang/InternationalJournalofMechanical286functionsobtainedfromtheeigenfunctionsofthetoppad,discandbottompadcomponents,respectively.Theradialandtangentialvibrations,ðup1;u;up2Þandðvp1;v;vp2Þcanbewritteninthemodalexpansionformassociatedwiththecorrespondingmodeshapefunctionsfjp1r;nðxÞ;jr;nðxÞ;jp2r;nðxÞg,fjp1y;nðxÞ;jy;nðxÞ;jp2y;nðxÞgaswell.Themodalcoordinatesarerearrangedinthevectorformforthefollowingdiscretization:fag¼qp1qqp28><>:9>=>;¼fa1a2.aNgT(22)FromthediscretizationofLagrangeequationbymodalcoordinates,thefriction-coupledequationsofmotionaregivenbyddtL_amC20C21C0Lam¼XNn¼1QmnðanÞ;m¼1;.;N;n¼1;.;N(23)L¼TC0ðUþUcÞ(24)dWC17XNm¼1XNn¼1QmnðanÞdam(25)whereUisthetotalstrainenergyoftheuncoupledcomponentdiscandtwopads,andT¼Tp1þTdþTp2(26)Td¼rZVdDrDtC1DrDtC18C19dV(27)Tp1¼rpZVpup1tC1up1tC18C19dV(28)Tp2¼rpZVpup2tC1up2tC18C19dV(29)Uc¼kc2ZAcðwPC0wp1RÞ2dAþUc;bottom(30)dW¼ZAcfðC0N1C0F1ÞC1dup1P0þðN1þF1ÞC1duPgdAþdWbottom(31)HereVdandVparethevolumesofthediscandpad,respectively.Inthesimilarmannerofobtainingthevirtualworkandcontactstrainenergyatthetopcontact,dWbottomandUc,bottomonthebottomcontactcanbederivedaswell.ThedirectionvectoroffrictionforceatthetopcontactislinearizedbyTaylorexpansionatthesteadyslidingequilibriumsuchthatVreljVrelj¼1rOðuP=tC0up1R=tÞþ1rðuP=yC0vPÞC26C27erþehþ1rwPyezþh:o:t.(32)whereh:o:tdenotesthehigherorderterms.HerewP=yisassociatedwithfrictionalfollowerforceasexplainedin11andneglectedinthesubsequentanalysisduetotheinsignificanceofthefrictionalfollowerforceasreferredto5,10,11and14.Usingthefiniteelementmethod,thetransversemodeshapefunctionsarediscretizedinthematrixformup1zC2C3¼up1z;1up1z;2C1C1C1up1z;Nphi¼jp1z;jðxiÞhi(33)½uzC138¼½uz;1uz;2.uz;NdC138¼½jz;jðxiÞC138(34)up2zC2C3¼up2z;1up2z;2C1C1C1up2z;Nphi¼jp2z;jðxiÞhi(35)Sciences51(2009)284294wherethelengthsoftheircolumnscorrespondtothenumbersofnodesinthecomponentFEmodel.Theradialandtangentialmodefunctionsarealsodenotedasf½up1rC138;½urC138;½up2rC138gandf½up1yC138;½uyC138;½up2yC138g.Fromthemass-normalizationandthelinearizationatthesteady-slidingequilibriumofEq.(23),thehomogeneouspartofthelinearizedequationsofmotiontakesthe(NC2N)matrixformsuchthataþð½GC138þ½CC138þ½RdC138þ½NsC138Þ_aþð½o2C138þ½AC138þ½BC138þ½FC138Þa¼0(36)wherethesystemmatricesaredescribedinEq.(37)andEqs.(A.1)(A.7)ofAppendixA.SubstitutingaðtÞ¼aoeltintoEq.(36)andsolvingRe(l)andIm(l)ofthecharacteristicequationresultinthedeterminationofthemodalstabilityandfrequency.HerethephysicalmeaningofeachsystemmatrixofEq.(36)isprovidedinthefollowing.½GC138ð¼C0½GC138TÞisthegyroscopicmatrixtobedescribedinEq.(37),Cisthestructuralmodaldampingmatrix,and½NsC138ð¼½NsC138TÞisthenegativeslopematrix.Thenegativefriction-sloperadialindiscmatrix.theEq.Kangetal.14,wherethefrictionalfollowerforceeffectswerewhere½GdC138¼OrZVd½urC138TuryC20C21C0½uyC138C18C19C0uryC20C21C0½uyC138C18C19T½urC138(þ½uyC138TuyyC20C21þ½urC138C18C19C0uyyC20C21þ½urC138C18C19T½uyC138þ½uzC138TuzyC20C21C0uzyC20C21T½uzC138)dV(38)Inordertoresolvetheabove,thehat-discandeachpadshouldbeuniformlymeshedinthecylindricalcoordinatesbyANSYS(oranyotherpre-processingFEsoftware).Ingeneral,thistaskistrickyandnotrecommendedforthepracticalpurpose.Alternately,theuniformdiscretizationwillbeachievedbyinterpolatingthemodalvectorsofirregularmeshesontothoseofuniformmeshes.Theonlypre-requisiteforthistaskistodiscretizethediscgeometryintheaxialdirection(asFig.1)generatingtheplanarmeshonARTICLEINPRESSznJ.Kang/InternationalJournalofMechanicalSciences51(2009)284294287showntobemarginalduetothedominantroleofBinthenumericalandanalyticalmanners.Inthefiniteelementapproach,severaltechnicaldifficultiesareencounteredincalculatingEqs.(27)(31)numericallyandsummarizedas:C15Themeshofthecontactareabetweenthediscandpadshouldbeidenticalinordertoconnectthefinitecontactforceelementsonthesamecontactpositionsofthematingparts.C15Tdrequiresthenumericaly-derivativesofmodalvectors.Particularly,thegyroscopicmatrixisgivenby½GC138¼½0C138½0C138½0C138½0C138½GdC138½0C138½0C138½0C138½0C138264375(37),(,)znlmkxyz(,)xyzitsincorporFig.uniformfollowerforceassociatedwith1=rðuP=yC0vPÞin(32),butneglectedinthesubsequentanalysisduetoinsignificance14aswell.Thelocalcontactmodel10atedwiththefrictionalfollowerforcescanbereferredtobyfrictionaleffectcanbereferredto17.½RdC138ð¼½RdC138TÞisthedissipativematrixstemmingfrom1=rOðuP=tC0up1R=tÞEq.(32).Also,o2isthenaturalfrequencymatrixoftheandpadcomponents,½AC138ð¼½AC138TÞisthecontactstiffnessOfthenon-symmetricstiffnessmatrix,½BC138ða½BC138TÞisnon-symmetricnon-conservativeworkmatrixproducedfriction-couple.½FC138ða½FC138TÞisderivedfromthein-planelmk4.Transversemodalvectoratz¼zkinterpolatedbytheuniformplanar-meshmethod:planarmeshinthepolarcoordinates.eachlayerperpendiculartotheaxis,wheretheplanarmeshesarenotyetuniform.Then,themodalvectorsassignedtotheplanarmeshofeachlayerareinterpolatedontothoseoftheuniformmeshinpolarcoordinatesbyMATLAB,whichwillbereferredtotheuniformplanar-meshmethod.Fig.4illustrateshowthemodalvectorontheirregularplanarmeshisinterpolatedontothatoftheuniformplanarmesh.Forthemodeshapeshownontheirregularmesh(Fig.5a),theinterpolatedmodalvectorontheuniformplanarmeshesassignedtothetopsurfacesoftherotorandhatpartsisdemonstratedasinFigs.5bandc.Fromtheuniformplanarmeshinthecylindricalcoordinates,thenumericaly-derivativesofthenthmodevectorcanbecalculatedatðri;yj;zkÞ,forexample,jz;nðri;yj;zkÞy¼jz;nðri;yjþ1;zkÞC0jz;nðri;yj;zkÞyjþ1C0yj(39)wherei¼1;.;Mr,j¼1;.;My,k¼1;.;Mz,andMr,My,Mzarethenumbersofthenodesofthehat-disc,respectively,inthecylindricalcoordinates(r,y,z).Fig.6demonstratestheseveraly-derivativemodalvectorsofthehat-discatagivenzk.Inordertoassignthefinitecontactforceelementtoeachfiniteelementofthediscandpadcontactsatthesamelocation,theplanarmeshtakeninthedisccontactsurfaceisdefinedonthepadcontactsurfaceaswell.Moreover,themodalvectorsonthepadcontactareinterpolatedontothoseofthedefinedplanarmesh.ConnectingthefinitecontactforceelementbetweenthediscandpadisreferredtoFig.7and18.Asaresult,the(,)ijkrz,(,)znijkrz(),(,)kxyzx(a)modalvectorontheirregularmesh;(b)modalvectorinterpolatedonthe

    注意事项

    本文(外文资料--Squeal analysis of gyroscopic disc brake system based on finite element method.pdf)为本站会员(英****)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!