会员注册 | 登录 | 微信快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文资料--Thermal analysis of locomotive wheel-mounted brake disc.pdf

  • 资源星级:
  • 资源大小:1.43MB   全文页数:5页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文资料--Thermal analysis of locomotive wheel-mounted brake disc.pdf

IranC2112012ElsevierLtd.Allrightsreserved.applyingandlesssusceptibletobrakefade,whichlargelycontributedtotheirpopularity1.Thethermalanalysisofbrakediscsisaprimarystageinthestudyofthebrakesystemsbecausethetemperaturedeterminesthermomechanicalbehaviorofthestructure.Inthebrakingsurface,hightemperaturesandthermalgradientsareproduced.Thisgeneratesstressanddeformationsinxstructureofeinthelocalheattransfercoefficientdistribution.Therefore,assumingaconstantvalueforheattransfercoefficientdoesnotseemtobelogical.Inthispaper,thermalanalysisofthewheelmountedbrakediscR920KfortheER24PClocomotivewhichismanufacturedinMAPNALocomotiveEngineeringandManufacturingCompanyMLCincooperationwithSIEMENSAGisinvestigated.DrivingforceofER24PCLocoissuppliedusingadieselelectricenginewiththemaximumspeedof160km/h.Thislocomotiveisusedtopullthepassengerwagons.Forcalculatingtheheattransfercoefficient,Correspondingauthor.Tel.þ989197481360faxþ982188013029.ContentslistsavailableatAppliedThermalEngineering512013948e952EmailaddressBehnam.ghadimiut.ac.irB.Ghadimi.brakesinmanydifferenttypesofvehicles.Severaladvantagesofbrakediscsovershoesbrakesarereported,includingbetterstoppingperformancedisccooledreadily,easytocontrolnotselfcalculationsinbrakediscs5,12,13.Asitisreportedintheexperimentalresults,CompletheventilatedtypebrakedisccausesagreatchangAsthespeedrestrictionoftrainscontinuestoexpand,overheatingandthermaldeformationonbrakesystemsaregoingtobecriticalforemergencybraking.Evenifdynamicbrakingsystemsareusedinnormalservicebraking,theirperformancesarenotsufficienttoensureanemergencybrakingathighspeed.Sofrictionbrakingsystemshavecrucialroleinemergencybraking.Forseveralyears,brakediscsincreasinglybecamemorepopularthanshoestransferonthetotalamountofdissipatedenergytothesurroundisinsignificant3e7,andconductionandconvectionmodesofheattransferplayacrucialroleincontributionofheatexchangeofthebrakesystem.TheproblemofthefluidflowbetweenthefinsoftheventilatedtypeofbrakediscsisoftenanalyzedinindividualstudiesbasedontheCFDmethod8e11.Neverthelessoftenanaverage,constantvalueoftheheattransfercoefficientisusedattemperature1.Introductionwhichtheconsequencesaremanifestedbytheappearanceofcracks2.Duringthenormalbraking,influenceoftheradiationheatarticleinfoArticlehistoryReceived17September2012Accepted29October2012Availableonline7November2012KeywordsWheelmountedbrakediscPadHeattransferLocomotive13594311/eseefrontmatterC2112012ElsevierLtd.http//dx.doi.org/10.1016/j.applthermaleng.2012.10.05abstractInrecentdecadestheimprovementofthebrakingperformancesarerequiredduetohighspeedoftrains.Thegeneratedfrictionalheat,duringbrakingoperationcausesseveralnegativeeffectsonthebrakesystemsuchasbrakefade,prematurewear,thermalcracksanddiscthicknessvariation.Itisthenimportanttodeterminethetemperaturefieldofthebrakedisc.Inthepresentwork,thermalanalysisofthewheelmountedbrakediscR920KfortheER24PClocomotiveisinvestigated.Thebrakediscandfluidzonearesimulatedasa3Dmodelwithathermalcouplingboundarycondition.Thebrakingprocessissimulatedinlaboratoryandtheexperimentaldataareusedtoverifythesimulationresults.Duringthebraking,themaximumtemperaturewasobservedinthemiddleofbrakingprocessinsteadofthebrakingendpoint.Moreover,alargelaggingwasobservedforfinstemperaturewhichrendersnocoolingatthebeginningofthebraking.Discsurfacetemperaturesincreasedbrakingtime,andthendecreased.Laggingeffectrendersnocoolingatthebeginningofthebraking.withincreasingThermalanalysisoflocomotivewheelmountedB.Ghadimia,,F.Kowsarya,M.KhoramibaSchoolofMechanicalEngineering,CollegeofEngineering,UniversityofTehran,Tehran,bMechanicalEngineeringDepartment,MAPNALocomotiveCompany,Karaj,IranhighlightsAteachtimestepthelocalHTCwascalculated,andusedfordiscthermalNumericalresultscomparewellwithexperimentaldata.AppliedThermaljournalhomepagewww.elseviAllrightsreserved.1brakediscanalysis.SciVerseScienceDirectEngineeringer.com/locate/apthermengparts.IfthelocomotivestopscompletelyV2¼u2¼0thenalltherotatingpartswillbeexpressedrelativetotherevolutionsofthewheel.Eq.1canberewrittenasfollowsEb¼12m1þIR2wmV21¼12kcfmV212flywheelmassesandassemblyoflocowheel.lEngineering512013948e952949thefluidflowwithinthechannelwasmodeledusingtheFLUENTCFDsoftware.Ateachtimestep,duetothelocomotivespeedandtemperaturedistributioninthebrakedisc,thelocalheattransfercoefficientoffinswascalculatedandwasappliedasaboundaryconditionforthebrakediscthermalanalysis.Anexperimentaldataverifiedthemodelingresults.2.ExperimentalsetupArailwaybrakediscsystemistestedontheZFDynamometerFig.1intheFaiveleyTransportCompanyandresultswerereportedtoMLC14.ZFDynamometerisabletorunwithspecificmissionprofilesindryandwetconditions.Thedynamometerhasanelectricmotorof536kWanduptofourcoupleableflywheelmassestosimulatevariousweightsandloadsofvehicles.Themeasurementoftemperatureisaveryimportantstepinthetestprocedure.Forthispurpose,aKTypeThermocouplein1.5mmthicknesswasused.Formodelingthebrakingphenomena,locomotivewheelwasacceleratedwiththeconstantvalueof0.8m/s2andreachedtothedesiredvelocity,thenthebrakingstartedandcausedconstantdecelerationwiththerateof1.117m/s2.Duringthebraking,brakingsurfaceandfinswalltemperatureswererecordedandusedforvalidatingthenumericalresults.3.ModelingTheER24PClocomotiveconsistsoftwobogies.EachbogiehasfourwheelswithonesetofwheelmountedbrakediscswhichconsistsoftwobrakediscsarrangedonbothsidesofawheelandareboltedtogetherthroughthewheelwebFig.2.3.1.ThermalmodelingRegardingtotheuniformpressureortheconstantwearFig.1.ZFdynamometerwithcoupleableB.Ghadimietal./AppliedThermaboundaryconditionatthecontactsurface,twomethodsareavailableforcalculatingthebrakingheatgenerationrate.Uniformpressuredistributioninthecontactregionisoftenvalidwhenthepadisnew.Howeverafterbrakingforseveraltimes,assumptionofuniformwearismorepragmatic.Inthisstudy,thepadwasusedseveraltimesanduniformwearbetweenpadandbrakediscisstabilized,hencetheheatfluxisjustafunctionoftimeanditisindependenceofthespatialvariables5.ForavehiclewhichisdeceleratingonalevelsurfacefromahighervelocityV1toalowervelocityV2thebrakingenergyEbcanbewrittenasEb¼12mC16V21C0V22C17þ12IC16u21C0u22C171whereIisrelatedtothemassmomentofinertiaoftherotatingparts,mlocomotivemassanduistheangularvelocityofrotatingFig.2.aWheelmountedbrakedisc,bwheelmountedbrakediscR920K,set,mounted.wherelistheheatgenerationratio,q00dandq00paretheheatfluxabsorbedbythebrakedisc,andpad,rrepresentsdensity,Cisthespecificheat,kthethermalconductivityandtheindexdandpindicatediscandpad,respectively.UsingEq.4and5,theheatTable1BrakediscR920Kdata.Brakingmassperbrakedisckg5456.5Wheeldiameteroriginmm1100Brakediscouterdiametermm920Brakediscinnerdiametermm640Widthofringmm24Widthoffinsmm30Densityofbrakediscmaterialkg/m37246SpecificheatofbrakediscmaterialJ/kgK500ThermalconductivityofbrakediscmaterialW/mK58Densityofbrakepadkg/m32180SpecificheatofbrakepadJ/kgK1090ThermalconductivityofbrakepadW/mK1.67Averagefrictioncoefficientm0.32AmbienttemperatureC14C55StarttemperatureofbrakediscC14C55Decelerationofvehicleaveragem/s21.177Engineering512013948e952B.Ghadimietal./AppliedThermal950wherekcfisthecorrectionfactorforrotatingmassesandRwisthewheelradius.BrakingpowerPbisequaltobrakingenergydividedbythebrakingtimet,orPb¼dEbdt3Forconstantdeceleration,Eq.2andEq.3yieldthebrakepowerasPb¼kcfmaðV1C0atÞ4whereaisthedecelerationofthelocomotive.Thedistributionofbrakingenergybetweenpadanddisccannotbepredictedreadily.Generally,thermalconductivityofthebrakepadsissmallerthanthedisckpkd,soonecanconsiderthatthetotalamountofthebrakingheatwillbecompletelyabsorbedbythebrakedisc.Thisassumptionleadstohighertemperatureestimationforbrakedisc.Toavoidthisissue,supposethatthebrakingoperationtimeisshort,hencethepadandbrakecanbeconsideredassemiinfinitesolidsandtheheatgenerationratiocanbecalculatedasfollows15l¼q00dq00p¼rdCdkdrpCpkp125Fig.3.Meshconstruction,abrakedisc,bfluidregion.fluxonthebrakingsurfacecanbefoundq00d¼lAðlþ1ÞkcfmaðV1C0atÞ6whereAisthediscandpadcontactarea.3.2.ModelingandboundaryconditionsForFEMandCFDanalysis,threedimensional3DconstructionsofbrakediscandcoolingairdomainweremodeledFig.3.Forsolvingthecontinuity,momentumandenergyequations,FLUENTunsteadysolverwasusedwithSIMPLEalgorithmforpressureandvelocitycouplingandkC0εrealizablemodelforviscousflowmodeling.PhysicalpropertiesofbrakediscandboundaryconditionsforanalysisaregiveninTable1.HeatfluxinthebrakingsurfaceiscalculatedfromEq.6.Ateachtimestep,accordingtothelocomotivespeedanddistributionoftemperatureinthebrakedisc,theFig.4.ThermalsimulationofbrakediscR920K,onestopsfrom154km/h.lEngineering512013948e952951B.Ghadimietal./AppliedThermalocalheattransfercoefficientoffinsiscalculatedbysolvingtheRANSandEnergyequationsinthefluidzone,andusedasaboundaryconditionforthebrakediscthermalanalysis.Thentheenergyequationwassolvedinthebrakediscandtemperaturedistributionatthesubsequenttimestepwascalculated.Thisprocedurecontinuesuntilthelocomotivecametoastop.4.ResultsanddiscussionThethermalanalysisofwheelmountedbrakediscofMAPNALocoER24PCwasconducted,inthecaseofoneemergencystopfrom154km/h.Fig.4showsnumericalresultsingoodcomparisonwithexperimentaldata.Fromthisfigure,itisseenthatthediscsurfacetemperaturewillincreasewithincreasingbrakingtimeandthenitdecreasesduetoasignificantreductioninheatgenerationvalueoverthebrakesurface.Duetotheheatconductioneffects,itispossibletoseealargedelayortimelaginfinstemperature.Thislaggingeffectrendersnocoolingatthebeginningofthebraking,sothesurfacetemperaturewillincreasesharply.Afterafewseconds,theheatfluxaffectsthefinsandfinstemperatureincreases.Byconvectioncoolingofthefins,brakingheatdissipatestotheair,andtherateofincreasinginsurfacetemperaturewillbereduced.TemperaturedistributiononthebrakediscinthreedifferenttimesispresentedinFig.5.Duetononuniformcoolingofthefinsintheirlength,themaximumtemperaturewasobservedinthedifferentregionsinthedifferenttimes.FromFig.5itisobviousthatthetemperaturevalueatthetopofthefinsisgreaterthanthetemperaturevaluebetweenthefins.Toelaboratethisbehavior,thedistributionofvelocityvectoratt¼20.5sispresentedinFig.6.LinearandrotationalvelocityeffectsFig.5.Temperaturedistributionsoftheontheairflowthroughthediscareclearlyvisibleinthisfigure.Stagnationandwakeregionregionaatthetopofthefins,andhighairvelocityabout22m/scanbeseenbetweenthefinsregionb.Stagnationregioncausedlowlocalheattransfercoefficientatregiona,whichleadstoareductioninheattransferanditcausesahighertemperaturevalue.Additionally,higherairvelocitybetweenthefinsleadstohighheattransfercoefficientbrakediscatdifferenttimes.Fig.6.Velocityvectordistributionatt¼20.5s.

注意事项

本文(外文资料--Thermal analysis of locomotive wheel-mounted brake disc.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5