会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译---在逆向工程中对适合曲线的数据点云的预处理 英文版.pdf

  • 资源星级:
  • 资源大小:211.00KB   全文页数:8页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译---在逆向工程中对适合曲线的数据点云的预处理 英文版.pdf

IntJAdvManufTechnol200016635–6422000SpringerVerlagLondonLimitedThePreProcessingofDataPointsforCurveFittinginReverseEngineeringMingChihHuangandChingChihTaiDepartmentofMechanicalEngineering,TatungUniversity,Taipei,TaiwanReverseengineeringhasbecomeanimportanttoolforCADmodelconstructionfromthedatapoints,measuredbyacoordinatemeasuringmachineCMM,ofanexistingpart.AmajorprobleminreverseengineeringisthatthemeasuredpointshavinganirregularformatandunequaldistributionaredifficulttofitintoaBsplinecurveorsurface.Thepaperpresentsamethodforpreprocessingdatapointsforcurvefittinginreverseengineering.TheproposedmethodhasbeendevelopedtoprocessthemeasureddatapointsbeforefittingintoaBsplineform.TheformatofthenewdatapointsregeneratedbytheproposedmethodissuitablefortherequirementsforfittingintoasmoothBsplinecurvewithagoodshape.Theentireprocedureofthismethodinvolvesfiltering,curvatureanalysis,segmentation,regressing,andregeneratingsteps.Themethodisimplementedandusedforapracticalapplicationinreverseengineering.TheresultofthereconstructionprovestheviabilityoftheproposedmethodforintegrationwithcurrentcommercialCADsystems.KeywordsCurvefittingPreprocessingofdatapointsReverseengineering1.IntroductionWiththeprogressinthedevelopmentofcomputerhardwareandsoftwaretechnology,theconceptofcomputeraidedtechnologyforproductdevelopmenthasbecomemorewidelyacceptedbyindustry.ThegapbetweendesignandmanufacturingisnowbeinggraduallynarrowedthroughthedevelopmentofnewCADtechnology.Inanormalautomatedmanufacturingenvironment,theoperationsequenceusuallystartsfromproductdesignviageometricmodelscreatedinCADsystems,andendswiththegenerationofmachininginstructionsrequiredtoconvertrawmaterialintoafinishedproduct,basedonthegeometricmodel.TorealisetheadvantagesofmoderncomCorrespondenceandoffprintrequeststoMingChihHuang,DepartmentofMechanicalEngineering,TatungUniversity,40ChungshanNRoad,3rdSection,Taipei104,Taiwan.EmailmindyKmgher.ttit.edu.twputeraidedtechnologyintheproductdevelopmentandmanufacturingprocess,ageometricmodeloftheparttobecreatedintheCADsystemisrequired.However,therearesomesituationsinproductdevelopmentinwhichaphysicalmodelorsampleisproducedbeforecreatingtheCADmodel1.Whereaclaymodel,forexample,indesigningautomobilebodypanels,ismadebythedesignerorartistbasedonconceptualsketchesofwhatthepanelshouldlooklike.2.Whereasampleexistswithouttheoriginaldrawingordocumentationdefinition.3.WheretheCADmodelrepresentingtheparthastoberevisedowingtodesignchangeduringmanufacturing.Inallofthesesituations,thephysicalmodelorsamplemustbereverseengineeredtocreateorrefinetheCADmodel.Incontrasttothisconventionalmanufacturingsequence,reverseengineeringtypicallystartswithmeasuringanexistingphysicalobjectsothataCADmodelcanbededucedinordertoexploittheadvantagesofCADtechnologies.Theprocessofreverseengineeringcanusuallybesubdividedintothreestages,i.e.datacapture,datasegmentationandCADmodellingand/orupdating1,2.Aphysicalmockuporprototypeisfirstmeasuredbyacoordinatemeasuringmachineoralaserscannertoacquirethegeometricinformationintheformof3Dpoints.Themeasuredresultsarethensegmentedintotopologicalregionsforfurtherprocessing.Eachregionrepresentsasinglegeometricfeaturethatcanberepresentedmathematicallybyasimplesurfaceinthecaseofmodelreconstruction.CADmodellingreconstructsthesurfaceofaregionandcombinesthesesurfacesintoacompletemodelrepresentingthemeasuredpartorprototype3.Inpracticalmeasuringcases,however,therearemanysituationswherethegeometricinformationofaphysicalprototypeorsamplecannotbemeasuredcompletelyandaccuratelytoreconstructagoodCADmodel.Somedatapointsofthemeasuredsurfacemaybeirregular,havemeasurementerrors,orcannotbeacquired.AsshowninFig.1,themainsurfaceofmeasuredobjectmayhavefeaturessuchasholes,islands,orroughnesscausedbymanufacturinginaccuracy,consequentlytheCMMprobecannotcapturethecompletesetofdatapointstoreconstructtheentiresurface.636M.C.HuangandC.C.TaiFig.1.Thegeneralproblemsinapracticalmeasuringcase.Measurementofanexistingobjectsurfaceinreverseengineeringcanbeachievedbyusingeithercontactprobingornoncontactsensingprobingtechniques.Whatevertechniqueisapplied,therearemanypracticalproblemswithacquiringdatapoints,forexamples,noise,andincompletedata.Withoutextensiveprocessingtoadjustthedatapoints,theseproblemswillcausetheCADmodeltobereconstructedwithanundesiredshape.InordertorebuildtheCADmodelcorrectlyandsatisfactorily,thispaperpresentsausefulandeffectivemethodtopreprocessthedatapointsforcurvefitting.Usingtheproposedmethod,thedatapointsareregeneratedinaspecifiedformat,whichissuitableforfittingintoacurverepresentedinBsplineformwithouttheproblemspreviouslymentioned.Afterfittingallofthecurves,thesurfacemodelcanbecompletedbyconnectingthecurves.2.TheTheoryofBsplineMostofthesurfacebasedCADsystemsexpressshapesrequiredformodellingbyparametricequations,suchasinBe´zierorBsplineforms.ThemostusedistheBsplineform.BsplinesarethestandardforrepresentingfreeformcurvesandsurfacesincurrentcommercialCADsystems.BsplinecurvesandBe´ziercurveshavemanyadvantagesincommon4.Controlpointsinfluencethecurveshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractiveenvironment.Bothtypesofcurvearevariationdiminishing,axisindependent,andmultivalued,andbothexhibittheconvexhullproperty.However,itisthelocalcontrolofcurveshapewhichispossiblewithBsplinesthatgivesthetechniqueanadvantageovertheBe´ziertechnique,asdoestheabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.Consideringtherealworldapplicationsrequirement,theBsplinetechniqueisusedtorepresentcurvesandsurfacesinthisresearch.ABsplinecurveisasetofbasisfunctionswhichcombinestheeffectsofn1controlpoints.AparametricBsplinecurveisgivenbypuOni0piNi,ku0u11Picontrolpointsn1numberofcontrolpointsNi,kutheBsplinebasisfunctionsuparameterForBsplinecurves,thedegreeofthesepolynomialsiscontrolledbyaparameterkandisusuallyindependentofthenumberofcontrolpoints,andtheBsplinebasisfunctionsaredefinedbythefollowingexpressionNi,1uH1ifuiuui10otherwise2andNi,kuuuiuikuiNi,k1uuik1uuik1ui1Ni1,k1u3Wherekcontrolsthedegreek1oftheresultingpolynomialsinuandthusalsocontrolsthecontinuityofthecurve.ABsplinesurfaceisdefinedinasimilarwaytoatensorproductinaBsplinecurve.ItisalsopossibletodefineaBsplinesurfacehavingdifferentdegreesintheuandvdirectionsSu,vOni0Omj0pijNi,puNi,qv0u143.CurveFittingGivenasetofdatapointsmeasuredfromexistingobject,curvefittingisrequiredtopassthroughthedatapoints.Theleastsquaresfittingtechniqueisthemostusedalgorithmwhichaimsatapproximating,basedonaniterativemethod,asetofdatapointstoformaBspline5–7.GivenasetofdatapointsQk,k0,1,2,...,n,thatlieonanunknowncurvePforcertainparametervaluesuk,k0,1,2,...,nitisnecessarytodetermineanexactinterpolationorbestfittingcurve,P.Tosolvethisproblem,theparametervaluesukforeachofthedatapointsmustbeassumed.Theknotvectorandthedegreeofthecurvearealsodetermined.Thedegreeinpracticalapplicationsisgenerally3order4.TheparametervaluescanbedeterminedbythechordlengthmethodQkPukOni0piNi,pukk0,1,...,n5u00,uiOij1uQjQj1u.Onj1uQjQj1u.6Giventheparametervalues,aknotvectorthatreflectsthedistributionoftheseparametershasthefollowingformU{0,0,...,0,V1,V2,...,Vn,1,1,...,1}p1p1Vj1pOjp1ijuij1,2,...,np7PreProcessingofDataPointsforCurveFitting637Fig.2.Curvefittingwithunequaldistributionofdatapoints.Itcanbeprovedthatthecoefficientmatrixistotallypositiveandbandedwithabandwidthoflessthanp,therefore,thelinearsystemcanbesolvedsafelybyGaussianeliminationwithoutpivoting.Ni,pukui,k0,...,nEquation5canbewritteninamatrixformQNP8whereQisanm11matrix,Nisanm1n1matrix,andPisann11matrix.Sincem.n,thisequationisoverdetermined.ThesolutionisPNTN1NTQ94.TheRequirementforFittingaSetofDataintoaBSplineCurveInordertoproduceaBsplinecurvewithagoodshape,somecharacteristicsarerequiredtofitthedatapointsetintoacurvepresentedinBsplineform.First,thedatapointsmustbeinawellorderedsequence.WhenapplyingtheprogramtofitasetofdatapointsintoaBsplinecurve,thedatapointsmustbereadonebyoneinaspecifiedorder.Ifthedatapointsarenotinorder,thiswillcauseanundesiredtwistoranoutofcontrolshapeoftheBsplinecurve.Secondly,anevendispersionofthedatapointsisbetterforcurvefitting.Inthemeasuringprocedure,somefactors,suchasthevibrationofthemachine,thenoiseinthesystem,andtheroughnessofthesurfaceofthemeasuredobjectwillinfluencetheresultofthemeasurement.Allofthesephenomenawillcauselocalshakesinthecurvewhichpassesthroughtheproblempoints.Therefore,asmoothgradationofthelocationofthedatapointsisnecessaryforgeneratingahighqualityBsplinecurve.HavingthedatapointsequallydistributedisimportantforimprovingtheresultofparameterisationforfittingaBsplinecurve.AsthemathematicalpresentationshowsinEq.9,thecontrolpointsmatrixPisdeterminedbythebasisfunctionsNanddatapointsQ,wherethebasisfunctionsNaredeterminedbytheparametersuiwhicharecorrespondtothedistributionofthedatapoints.Ifthedatapointsaredistributedunequally,thecontrolpointswillalsobedistributedunequallyandwillcausealackofsmoothnessofthefittingcurve.Asmentionedabove,inpracticalmeasuringcases,themainsurfaceFig.3.Curvefittingwithequaldistributionofdatapoints.Fig.4.Theprocedureofdatapointspreprocessing.ofaphysicalsampleoftenhassomefeaturessuchasholes,islands,andradiusfillets,whichpreventtheCMMprobefromcapturingdatapointswithequaldistribution.Ifacurveisrebuiltbyfittingdatapointswithanunequaldistribution,asshowninFig.2,thegeneratedcurvemaydifferfromtherealshapeofthemeasuredobject.Figure3illustratesthatasmootherandmoreaccuratereconstructionmaybeobtainedbyfittinganequallyspacedsetofdatapoints.5.ThePreProcessingofDataPointsToachievetherequirementsforfittingasetofdatapointsintoaBsplinecurveasmentionedabove,itisveryimportantandnecessarythatthedatapointsmustbepreprocessedbeforecurvefitting.Inthefollowingdescription,ausefulandeffectivemethodforpreprocessingthedatapointsforcurvefittingispresented.Theconceptofthismethodistoregressasetofmeasuringdatapointsintoanonparametricequationinimplicitorexplicitform,andthisequationmustalsosatisfythecontinuityofthecurvature.Foraplanecurve,theexplicitnonparametricequationtakesthegeneralformyfx.Figure4638M.C.HuangandC.C.TaiFig.5.Curvatureiscalculatedbythreediscretepointsonacircle.illustratesanoverviewoftheproceduretopreprocessthedatapointsforreverseengineering.Datapointfilteringisthefirststepindisplacingtheunwantedpointsandthenoisypoints.TheoriginaldatapointsmeasuredfromaphysicalprototypeoranexistingsamplebyaCMMareindiscreteformat.Whenthemeasuredpointsareplottedinadiagram,thenoisypointswhichobviouslydeviatefromtheoriginalcurvecanbeselectedandremovedbyavisualsearchbythedesignerforextensiveprocessing.Inaddition,thedistinctdiscontinuouspointswhichapparentlyrelatetoasharpchangeinshapemayalsobeseparatedeasilyforfurtherprocessing.ManyapproacheshavebeendevelopedforgeneratingaCADmodelfrommeasuredpointsinreverseengineering.Acomplexmodelisusuallyconstructedbysubdividingthecompletemodelintoindividualsimplesurfaces8,9.EachoftheindividualsurfacesdefinesasinglefeatureinaCADsystemandacompleteCADmodelisobtainedbyfurthertrimming,blendingandfilleting,orusingothersurfaceprocessingtools.Whenthedesignerisgivenasetofunorganiseddatapointsmeasuredfromanexistingobject,datapointsegmentationisrequiredtoreconstructacompletemodelbydefiningindividualsimplesurfaces.Therefore,curvatureanalysisforthedatapointsisusedforsubdividingthedatapointsintoindividualgroups.InordertoextracttheprofilecurvesforCADmodelreconstruction,inthisstep,datapointsaredividedintodifferentgroupsdependingupontheresultofcurvaturecalculationandanalysisofthedatapoints.Foreach2Dcurve,yfx,thecurvatureisdefinedaskd2ydx2F1SdydxD2G3/2f†1f¢23/210Ifthedataisexpressedindiscreteform,foranythreeconsecutivepointsinthesameplaneX1,Y1X2,Y2X3,Y3,thethreepointsformacircleandthecentreX0,Y0canbecalculatedasseeFig.5X0abcdY0efgdwhereaX1X2X2X1Y3Y2bX2X3X3X2Y2Y1cY1Y3Y2Y1Y3Y2d2X2X1Y3Y2X3X2Y2Y1Fig.6.Thefilletofthemodel.Fig.7.Thecurvaturechangeofthefillet.eY1Y2Y2Y1X3X2fY2Y3Y3Y2X2X1gX1X3X2X1X3X2And,thecurvaturekofX2,Y2canbedefinedask1r1X0X22Y0Y2211Figure6illustratesanexampleinwhichthecurvaturesofaplanecurveconsistingofadatapointsetarecalculatedusingthepreviousmethod.Thecurvatureofthecurvedeterminedbythedatapointsetchangesfrom0to0.0333,asshowninFig.7.Thisindicatesthatthereisafilletfeaturewitharadius30inthedatapointsset.Thus,thesepointscanbeisolatedfromtheoriginaldatapoints,andformasinglefeature.Bycurvatureanalysis,thetotalarrayofdatapointsisdividedintoseveralgroups.Eachofthesegroupsisasegmentedformoftheoriginaldatapointswhichisdevoidofanysharpchangeinshape.Aftersegmentation,individualgroupsofdatapointsareseparatelyregressedintoexplicitnonparametricequations,andthenthedatapointscanberegeneratedfromtheregressionequationinawellorderedsequence,withappropriatespacingandanequaldistributionsothatbetterfittingcanbeachieved.TheformatofthenewdatapointsetisvalidforfittingintoasinglesimpleBsplinecurvewithoutinnerconstraints,whichcanbeappliedforfurthereditingandmodifying,suchastrimmingandextending.Bycombiningindividualcurvestoconstructallofthesurfaces,designersmayeffortlesslyachieveacompleteCADmodelconformingtothedesignintent.Additionally,someregressionerrorsareintroducedbytheregressionoperationbetweenthemeasuredpointsandtheregressionequation.Inthefollowingexample,theorderoftheregressionequationisdiscussed,becauseitbearsacloserelationshiptotheregressionerrors.Givenasetofexistingdatapoints,thesetisregressedusingadifferentorderoftheregressionorder2,3,4,5.Figure8illustratestherelationshipbetweentheorderoftheregressionequationsandtheregressederrorscalculatedbytherootmeansquarer.m.s.method.This

注意事项

本文(外文翻译---在逆向工程中对适合曲线的数据点云的预处理 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5