会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译---汽车复合材料悬架摆臂的实验分析 英文.pdf

  • 资源星级:
  • 资源大小:540.19KB   全文页数:5页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译---汽车复合材料悬架摆臂的实验分析 英文.pdf

ExperimentalanalysisofacompositeautomotivesuspensionarmM.PINFOLDandG.CALVERTUniversityofWarwick/RoverGroupGaydon,UKReceived11November1992revised26March1993Inapplicationswhereweightsavingandpartsintegrationcanbeachieved,theRoverGrouphasbeeninvestigatingthedesignandmanufactureofcomponentsfromcompositematerials.Themethodsusedinthedifferentstepsinthedesigntomanufacturecycleinthehighvolumeautomotiveindustryarerelativelywellknownforasteelcomponent,butarenotsowellestablishedforacompositecomponent.Adesignmethodologyforcompositeshasbeenemerginginwhichaprincipalprocedureisdesignanalysis.Oneofthemostestablishedmethodsofanalysisisthatusingthefiniteelementtechnique,andthisisbeingsupplementedwithexperimentaltestsonprototypesusingphotoelasticanalysisandstresspatternanalysisbythermalemission,coupledwithconventionalstraingaugemonitoring.Littleworkhasbeenundertakentocorrelatetheresultsobtainedfromthesedifferenttestmethodsandtocomparetheresultswithmeasurementsmadeonanactualcomponent.Thispaperpresentssomeoftheworkundertakenconcerningtheanalysisandtestingofacompositeautomotivesuspensionarm.Theresultsobtainedfromthethreedifferentanalysistechniquesarecomparedwithexperimentaltestresults,andtheiraccuracyisdiscussed.KeywordsautmotivesuspensionarmstressanalysisfiniteelementmethodphotoelasticanalysisSPATEstraingaugessheetmouldingcompoundSolanddeWildestatethatcompositematerialshavebeenusedincreasinglyasstructuralmaterials.Areasonforthis..,isthatcompositematerialshavehighstrengthtoweightandhighstiffnesstoweightratioswhichcansignificantlyreducetheweightofastructure...Perhapsthemostimportantfeatureofcompositematerialsisthattheirmechanicalpopertiescanbetailoredtomeetaspecificcriterion.However,Johnsonetalsuggestthatcompositedesign,analysisandfabricationtechnologymustundergomajordevelopmentsandsuccessfuldemonstrationsbeforesignificantstructuralcomponentswillbeincorporatedinproductionautomobilesandtrucks.Compositematerialshavetocompetewithsteelwithintheengineeringenvironment.WithintheautomotiveindustrythisrequiresacertainamountoftechnologytransferfromplacessuchastheAdvancedTechnologyCentreattheUniversityofWarwick,whichworkwithmaterialmanufacturersandautomotiveengineerstoenableunderstandingaboutthesematerialsasanalternativetothetraditionalmaterialssuchassteel.Ifcompositesaretocompetewithtraditionalmaterialsinarealsense,thenautomotivedesignersneedtobefullyaware00104361/94/01005905©oftheirstrengthsandlimitationssothattheycanbeoneofperhapsmanyoptionsconsideredattheconceptstageofthedesign.Forthistohappenautomotiveengineersneedtocatchuponthetechniquesofdesigning,testingandmanufacturingcomponentsfromcomposites.ThiswillincludeunderstandinghowvariousmethodssuchasfiniteelementFEanalysis,stresspatternanalysisbythermalemissionSPATEandphotoelasticanalysiscanbeappliedtocompositecomponentsintheirdesignanddevelopment.Thusfarlittleworkappearstohavebeenundertakentostudywhethertheresultsobtainedfromthesedifferentanalysismethodscorrelatewithoneanotherorwithactualexperimentalresultsobtainedfromtestingarealcomponent.Inordertostudytheapplicationandcorrelationofthedifferentanalysismethodstocompositematerials,acompositecomponentanautomotivelowersuspensionarmwasmanufactured.Thiscompositecomponentwasanalysedbythethreemethodsdescribedaboveandalsotestedunderrealisticloadingconditions,withexperimentalresultsbeingobtainedfromstraingauges.1994ButterworthHeinemannktdCOMPOSITES.VOLUME25.NUMBER1.199459,BallJoint°HousingFig.1ThecompositesuspensionarmDESIGNTheexistingsteellowersuspensionarmconsistsofninepiecesweldedtogetherwhilsttheredesignedcompositecomponentwhichcanbeseeninFig.1isasinglemouldedpart.ThematerialusedtomanufacturethesuspensionarmwasasheetmouldingcompoundSMC,comprisingapolyesterresinbondingagentwitha30contentofrandomlyarrangedshortglassfibresandcalciumcarbonatefiIler.Theweightofthesteelsuspensionarmis2.53kgwhilsttheredesignedSMCsuspensionarmcompletewithbushesandballjointweighs1.5kg.Thematerialpropertiesusedforthecompositesuspensionarmintheseanalyses,obtainedfromtestscarriedoutatRoversmaterialslaboratory,wereYoungsmodulus10.5GPa,Poissonsratio0.26anddensity1.8x106kgmm3.EXPERIMENTALTECHNIQUESPriortoundertakingexperimentalanalysisofanactualengineeringcomponent,someinitialvalidationworkwasrequiredtogainconfidenceinthetechniqueswhenappliedtosheetmouldingcompound.Therefore,fiatplates,beamsanddiscsconstructedfromSMCwereanalysedundervariousloadingconditionsbeforeprogressingontothedesignedcomponent.Mostvalidationtestswerecarriedoutusingstraingaugedspecimenstocorrelatewiththefiniteelementanalysisresults.AlthoughitisrecognizedthatSMCisnotanisotropiematerialduetosomefibreorientationduringprocessing,forthepurposesofanalysisthematerialwasassumedtobeisotropic.Also,whentheactualSMCsuspensionarmwascutupandexamined,significantfibredistributionwasobservedintheribs.Itisfeltthatthecorrelationbetweentheexperimentalandanalysisresultsvalidatedthisassumptioninthecaseofthisparticularcomponent.StraingaugetestsBeforeundertakingtheexperimentaltestwork,thecompositecomponentwasmountedviaitsrubbermountingbushesontoarelativelyinfinitelystiffstructure.Itisverydifficulttocoveralloftheloadingconditionswhenconductingexperimentaltestsandthusaworstcasescenarioisusuallyassumed.Theworstcaseloadingconditiononsuspensioncomponentsisknownaspotholebrake.Thisattemptstosimulatethevehiclefallingintoadeeppotholeat30mphwiththebrakesfullyappliedatthepointofimpact.Theresultantfore/aftandlateralloadsarethencalculatedbasedontheweightandvelocityofthevehicle.Duetothelimitationsofthetestrigthefullpotholeloadscouldnotbeappliedtothecomponent,andthusreducedloadswiththesameresultantdirectionasthepotholeloadswereappliedandtheresultsscaled.Theloadsappliedforthefullpotholebrakecasewere24.2kNinXand8.2kNinY,andforthereducedloadcasewere5.9kNinXand2.02kNinYseeFig.1.Thestraingaugesusedconsistedofsixthreeaxisrosettegaugesand13singlegridgauges,with2.5mmgridlengths,chosentofitintotheradiiofthecomponentinanattempttomeasurethemaximumstrain,Gaugesweresituatedneartheballjointhousing,wheretheloadswereapplied,andaroundtheradiiofthebodymountingbushes,wherethecomponentwouldbemountedtothecarsubframe.Additionalstraingaugesweresituatedonsomeofthestrengtheningribsandclosetotheantirollbarmountingposition.SPATEanalysisStresspatternanalysisbythermalemissionSPATEcanbeusedtodeterminethesurfacestressesofcomponentsbystudyingthesmallchangesintemperatureduetocyclicloadingconditions.SPATEequipmentcomprisesadetectorunitwithscanninghead,ananaloguesignalprocessingunitandadigitalelectronicdataunit.Thesystemworksbydetectingtheminutetemperaturechangeswhichoccurwhenastructureiscyclicallyloaded.Theinfrareddetectorscansthestructureandcorrelatesthemeasuredoutputwithareferencesignalfromtheloadingsystem.Anelectronicdataprocessingsystemcorrelatesthedetectedstressinducedthermalfluctuationswiththeloadingreferencesignal.Acolourcontourmapofthesumoftheprincipalstressescr4isthenplotted,togetherwithabarchartgivingactualvalues.Thiscorrelationofsignalseffectivelyeliminatesallsignalfrequenciesotherthanthosecausedbytheloadingsystem,i.e.,allambienttemperaturefluctuations.TheSPATEsystemhasatemperatureresolutionof0.001°C,andaspatialresolutionoflessthanImm.ThistypeofanalysishasbeenshownbyanumberofauthorsTMtoalsobeapplicabletononisotropicmaterialssuchascomposites,andthesmallerrors6demonstratedfromsuchstudieswhencomparedwiththeoreticalorFEresultsarefelttobeduetoinaccuraciesinthematerialdataused4.Itisapparentfromthestudiesundertakenthattheuseofthermoelasticstressanalysistoevaluatestressesandstrainsinanisotropiccompositematerialsismorecomplexthanforisotropicmaterials.However,ithasbeenshownthatthetechniquecanprovidevaluablequalitativeinformationonstressdistribution,effectsofsurfacedefectsandcrackgrowthpredictions.Ithasalsobeendemonstratedthat,givenaccuratedetailsofmaterialpropertiesincludingexpansioncoefficients,quantitativeresultscanbeobtaineddependinguponthedegreeofanisotropyofthematerial.PriortoundertakingafullSPATEanalysisofthesuspensionarmitwasnecessarytodetermineacalibrationfactorforthematerialused.Thiscanbeachievedintwoways,eitherbyloadingadiscofthematerialincompressionandcomparingtheSPATEoutputwiththetheoreti60COMPOSITES.NUMBER1.1994calsolution,orbystraingaugingdirectlyontothecomponentinanareaofevenstressdistribution,therebyobtainingadirectcomparisonwiththeSPATEoutput.Bothmethodswereusedinthiscase,butdirectcalibrationwithstraingaugescanovercomealotoftheproblems,thusallowingsignificantinformationtobeobtainedfromtheSPATEoutput.PhotoelasticanalysisThemajorityofphotoelasticworkinvestigatingthemacromechanicalbehaviourofcompositematerialshasbeenundertakenusingphotoelasticcoatingtechniques.Thisisdonetoavoidthecomplexitiesofconstructingaphotoelasticmodelwithanisotropicpropertiesandthusconstructingacompositeliketheoriginalwhichwouldloseitstransparencyandcouldnotbeanalysed.However,forcomplexfibrelayupsthiswouldbetheonlymethodofconductingphotoelasticanalysis,andthussomeresearchhasbeenundertakeninvestigatingtheuseoftheactualcompositesj730.Reasonableresultshavebeenobtainedfromsuchanalyses,butwithlimitationsduetothenecessityfortransparencywithinthecomposite.However,thecompositecomponentconsideredinthisstudywasmanufacturedfromSMCandthematerialwasassumedtobeisotropic,thussimplifyingthecreationofaphotoelasticmodel.Athreedimensionalepoxyresinmodelofthesuspensionarmwasconstructedforthephotoelasticanalysis.Themodelwasthenloadedinarepresentativemanner,withscaleddownloads,andsubjectedtoastressfreezingcycle.Thisinvolvesheatingthemodeluptothematerialsglasstransitiontemperature,atwhichpointtheYoungsmoduluschanges,andthemodeldeformsundertheappliedloads.Themodelisthenslowlycooled,avoidinganyuneventemperaturedistributionwhichcouldresultinunwantedthermalstresses.Duringthecoolingcyclethedeformationsandstressesarelockedintothemodel.Whenviewedunderpolarizedlightthethreedimensionalmodelisajumbleofinterferencefringes.Inordertodeterminebothmagnitudeanddirectionoftheprincipalstressesatanypoint,asliceisremovedandobservedunderpolarizedlight.Bycountingthefringesthestressesinthemodelcanbecalculatedandconvertedintoactualstressinthecomponent.Thisisdonebymeansofproportionality,betweenthemodelandcomponentmaterials,andtheloadinganddimensionalparameters.Thelowersuspensionarmismountedtotherestofthecarviarubbermountingbushes.Investigationswerecarriedoutastothepossibilityofmodellingthesemountingbushes.However,experimentswithsiliconandfoamrubbersshowedthattherequiredscaleddownstiffnessofthebushesduringstressfreezingatelevatedtemperaturescouldnotbemaintained.Thephotoelasticanalysisthusassumedthatthesuspensionarmwassolidlymounted.FINITEELEMENTANALYSISThecompositesuspensionarmwasmodelledusingapproximately1300oftheSTIF45ANSYSsolidelements.Thesuspensionarmismountedtothesubframeviarubbermountingbushestheseweremodelledwithspringelementstorepresentthestiffnessofthebushesandtocreatearealisticloaddistributionthroughoutthecomponent.LoadswereappliedtotheFEmodelviabeamelementsattheballjoint.ThreeloadcaseswereanalysedusingtheANSYSFEsoftware.Thefirstloadcasesimulatedthefullpotholebrakeloads.Thesecondsimulatedthereducedloadusedinthetestsduetothelimitationsofthetestrig,toenablecomparisonswiththeresultsfromtheexperimentalstraingaugeanalysis.Thesetwoloadcasesusedspringelementstosimulatethestiffnessoftherubbermountingbushes.Thethirdloadcaseagainusedthereducedloadsbutthistimeomittedthespringelementsi.e.,thesuspensionarmwasmodelledasbeingsolidlymounted.ThisthirdloadcasewasrequiredtocorrelatewiththeSPATEandphotoelasticanalyses.RESULTSFiniteelementanalysisAnalysisofthesuspensionarmshowedthatthemaximumequivalentstressinthecomponentfortheloadcaseconsideredisveryclosetotheultimatetensilestrengthoftheproposedmaterialforthepotholeloadingcondition,whichistheworstloadingcondition.Thismeansthatthecomponentmayneedtobemanufacturedfromadifferentmaterial,orthatothermaterialsneedtobepositionedinareasofhighstresstostrengthenthecomponentlocally.Duetoconstraintsupontheamountofcomputerdiscspaceavailable,thenumberofelementsusedwithintheFEmodelwasrelativelylowandthusthesizeoftheelementswithintheareaoftheradiiaroundthebodymountingbusheswastoolargetodetectanylargestressconcentrations.Also,thetypesofelementusedaroundtheseareas,duetothegeometryofthecomponent,wereamixtureofbrick,wedgeandtetrahedral.Thelattershapetendstobetoostifftogivegoodresultsandisnotrecommended.Ifmoredetailedresultswererequiredintheseareas,thentheseradiiwouldhavetobemodelledingreaterdetailwithmoreandsmallerelementsintheareasofhighstressgradient.PhotoelasticanalysisTheanalysisofthephotoelasticmodelofthesuspensionarmwasundertakenassumingthatthedirectionsofthemaximumprincipalstresseslayinahorizontalplanethroughthemodelinthedirectionofthefore/aftload.Whilstthisisnotstrictlytrueinpracticeduetolocalgeometryeffectsincertainareas,theassumptiongavesufficientlyaccurateresults.Ifobviousdiscrepancieswerefoundinparticularareasthenitwaspossibletotakeslicesfromdifferentplanes.Maximumstresseswereseentooccurinthevicinityoftheballjointhousingandthebodymounts.Duetotheabilityofphotoelasticanalysistopinpointverysmallareasofhighstress,themaximumstressvaluesgivenbyphotoelasticitytendedtobehigherthanthestraingaugeresults.Forexample,maximumstresslevelsintheinternalradiusoftheleadingbodymountwerefoundtobe43MPacomparedwithaSPATEvalueof26MPa.ThisdifferencecanbeexplainedbyexaminingtheslicetakenthroughthephotoelasticmodelwhichshowsthatthemaximumstressonlyoccursatapositionCOMPOSITES.NUMBER1.199461Table1.StressresultsMPaforfullloadconditionsPositionStraingaugesFEPhotoelasticBalljointhousing176165176spanning3mmandthatthestressvalueseithersideofthemaximumarearound25MPa.SPATEanalysisTheinitialSPATEscanshowedlargebandsofstressrunningacrossthemountingareasandsomeconfusionastowhethertheseareaswereintensionorcompression.Theproblemwasidentifiedasexcessivemovementinthesuspensionarmbodymountingpositionsduetodistortionoftherubberbushesasexperiencedinthestraingaugetests.SPATEisequippedwithamotioncompensatordeviceifrequired,whichdeflectsthescanningmirrorsinsidethedetectorintimewiththeoscillationsofthetestpiece,therebyeliminatingthemovement.However,inthisparticularcase,thegeometryanddirectionofmovementcouldnotbeeliminatedovertheentireareaatthesametime,andthusitwasnecessarytoremovetherubberbushesandtoreplacethemwithaluminiumones.TheSPATEanalysiswasrepeatedwiththesolidbushesandshowedareasofhightensilestress26MPaalongtheleadingedgeandaroundtheinnerradiusoftheleadingbodymountingposition.Unfortunately,noSPATEanalysiscouldbeundertakenattheballjointendofthecomponentasitwasobscuredbythelargeloadingadaptorrequiredtofitthehydraulicactuatorsupplyingthecyclicloading.COMPARISONOFRESULTSItshouldbeclarifiedthatthestressvaluesquotedinthetablesfromthestraingaugeresultswerecalculatedfromtherosettegaugestogiveavalueofmaximumprincipalstress.Thephotoelasticanalysisalsogivesmaximumprincipalstressesunlessthevaluesaretakeninboardofafreeedgeinwhichcasetheyaredifferencesinprincipalstresseso.o,,.SPATEanalysisgivesanoutputintheformofthesummationoftheprincipalstressesor.a2whereastheFEoutputcanbeinanyformrequiredinthiscaseyonMises.Duetothegeometryofthecomponentandthewayinwhichtheloadswereapplied,thevaluesofor2andcr3werealwayssmall,andthusdirectcomparisonscouldbemadebetweenthedifferentanalysismethodswithoutfurtherconversion.Tablelcomparestheresultsobtainedforthemaximumpotholeloadconditions.Themaximumstressvaluesalloccurattheballjointareaandcorrelateverywell.Theseresultantstressesforthestraingaugesandphotoelasticitywerecalculatedfromtheresultsobtainedforthereducedload.Themodelstresswasmultipliedbyaloadingfactorastheratiobetweenthefore/aftandlateralloadingremainedconstantandinthesameproportionasthefullpotholebrakeloadappliedtothesuspensionarlTI.TheresultsoftheanalysesundertakenwithreducedTable2.StressresultsMPaforredTJcedloadswithmountingbushesPositionStraingaugesFEInnerradiusofbody2520mountBalljointhousing4940Table3.StressresultsMPaforreducedloadswithoutmountingbushesPositionFESPATEPhotoelasticInnerradiusofbody22mountBalljointhousing302643254225loadingbutwiththemountingbushesincludedcanbeseeninTable2.Table3presentstheresultsoftheanalysesundertakenwithreducedloadingandwithoutthemountingbushesbeingused.ThestressgivenbythephotoelasticanalysisisconcentratedataverysmallpointwhereasthestressgivenbyFEanalysisisaveragedoverarelativelylargearea.Inthecaseofthephotoelasticresults,anaverageofthenominalstressesonbothsidesoftheconcentrationpointisalsoquotedinbracketstogiveafairercomparison.Comparedwiththestraingaugeresults,thevaluesgivenbySPATEareverysimilarforthemaximumstress.IntheorySPATEshouldbemoreeffectivethanstraingaugeswheninvestigatingstressconcentrationeffects,asitismeasuringvaluesoverasmallerareadependinguponitsdistancefromtheobjectduringscanning.InthiscasethemeasurementpointofSPATEwassetatImmdiametercomparedwitha2.5mmgridlengthonthestraingauges.However,inthisinstancethedifferencesweresmallandmovementofthecomponentduringloadcyclinginevitablyblurredtheimagetosomeextent,thusthedifferenceinresolutionwasprobablynegligible.CONCLUSIONSAlltheanalysistechniquesusedi.e.,SPATE,photoelastic,finiteelementandstraingaugeanalysesshowedthattheareaofhigheststresswasinthevicinityoftheballjointhousing.Allofthemethodsalsoshowedsignificantstressesintheareasofthebodymountingbushes.However,theFEanalysisdidnotalwaysaccuratelyidentifythesehighstressesduetothesizeoftheelementswithintheseareasbeingtoolarge.IfmoredetailedresultswererequiredfortheseareasfromtheFEanalysis,thentheywouldhavetobemodelledinmoredetailwithagreaternumberofelementsintheareasofhighstressgradient.Theoverallpatternofstressdistributionwasthesameforeachanalysistechnique.Thedifferences62COMPOSITES.NUMBER1.1994

注意事项

本文(外文翻译---汽车复合材料悬架摆臂的实验分析 英文.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5