百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

首页 人人文库网 > 资源分类 > DOC文档下载

外文翻译--RBF 神经网络.doc

  • 资源星级:
  • 资源大小:100.04KB   全文页数:18页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:5
游客快捷下载 游客一键下载
会员登录下载
下载资源需要5
邮箱/手机号:
您支付成功后,系统会自动为您创建此邮箱/手机号的账号,密码跟您输入的邮箱/手机号一致,以方便您下次登录下载和查看订单。

支付方式: 微信支付       支付宝      
验证码:   换一换

友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--RBF 神经网络.doc

附录A2.RBF神经网络2.1神经网络原理人脑存储的信息是分布式地存储在脑细胞之间的关联上,而不是保存在脑细胞的内部。脑细胞通过它们之间的作用关系(如激励和抑制)来存储。人工模拟这种映射关系的系统称为(人工)神经网络(ANN)。神经网络是一个具有高度非线性的超大规模连续时间动力系统,是由大量的处理单元(神经元)广泛互连而形成的网络。它是在现代神经科学研究成果的基础上提出的,反映了脑功能的基本特征。但它并不是人脑的真实描写,而只是它的某种抽象、简化与模拟。网络的信息处理由神经元之间的相互作用来实现,知识与信息的存储表现为网络元件互连间分布式的物理联系,网络的学习和计算决定于各神经元连接权系的动态演化过程。其中,神经元构成了网络的基本运算单元,每个神经元具有自己的阂值,每个神经元的输入信号是所有与其相连的神经元的输出信号和加权后的和。而输出信号是其净输入信号的非线性函数。如果输入信号的加权集合高于其闲值,该神经元便被激活而输出相应的值。在人工神经网络中所存储的是单元之间连接的加权值阵列。神经网络的工作过程主要由两个阶段组成:一个阶段是工作期。此时各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一阶段是学习期(自适应期,或设计期)。此时各计算单元状态不变,各连接权值可修改(通过学习样本或其他方法)。前一阶段较快,各单元的状态亦称短期记忆(STM)。后一阶段慢的多,权及连接方式亦称长期记(LTM)。目前神经网络的结构有近百种之多,算法更无法记数。根据网络特性,神经网络大致可以分为静态和动态两类。静态网络当前的输出仅仅反映当前输入数据的处理结果。动态网络是有记忆能力的网络,记忆能力可以是由于神经元传递函数是微分或差分方程导致的;也可以是由于网络的输出或网络内部的状态反馈到网络的输入端产生的。下面对于一些常见于控制系统中的网络结构和算法作简要的介绍。2.1.1神经网络的结构类型1.神经网络的基本结构神经网络是由大量简单神经元相互连接构成的复杂网络。图2-1是一个典型的单层神经网络模型,它具有R维输入,S个神经元。p为RXI维的输入矢量,网络层由权值矩阵W(SxR)、闭值矢量b(Sxl)、求和单元。和传递函数运算单元f组成,S个神经元的输出组成了Sxl维的神经网络输出矢量a。其中,输入层网络权值矩阵W和阀值矢量b的具体形式如下:在单层神经网络的基础上可以构造多层神经网络。

注意事项

本文(外文翻译--RBF 神经网络.doc)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(发送邮件至renrendoc@163.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

copyright@ 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5