欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--航空材料超声辅助车削的仿真与实验研究 英文版.pdf

    • 资源ID:96278       资源大小:399.69KB        全文页数:6页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--航空材料超声辅助车削的仿真与实验研究 英文版.pdf

    ofg,isprocess.ultrasonictheultrasonicKeywords:Ultrasonicmachining;Turning;Finiteelementmodelling;Microstructuretheexistent,conventionalturning(CT)technology.frequencyultrasonicvibration,superimposedontheconventionalmovementofthecuttingtool(Fig.1),hasprovedtobeeectiveinmachiningintractablemetalalloysaswellasbrittlematerials,suchasceramicsandcuttingforces7,8.trolsystem.Thissystemstabilisestheturningprocesswithultrasonicvibrationandmakesthisprocesshighlycontrollable.Thedetaileddescriptionofthisnovelcontrolsystemisgivenin9,10.TheexperimentalpartofthispaperstudiesUATwithautoresonantcontrolincomparisontoconventionalturning.AnotherimportantissueconcerningUATisthe*Correspondingauthor.Tel.:+44-1509-227504;fax:+44-1509-Conventionalmachiningofmodernnickel-andtita-nium-basedsuperalloys,usedinaerospaceapplications,causeshightooltemperaturesandsubsequentfastwearofcuttingedgesevenatrelativelylowcuttingspeeds.Agrowingdemandformachiningtheseintractablematerialsrequiresnewadvancedturningtechnologies.Suchatechnologywasintroducedin1960s:high-Nevertheless,uptothepresentdayUAThasnotbeenwidelyintroducedintoindustrialenvironment.ThemainreasonforitissensitivityoftheUATprocesstotheloadappliedtothecuttingtip,resultinginthelossofcuttingeciencywhentheloadchangesoradierenttipisused.However,thislimitationhasrecentlybeeneliminatedwiththeinventionoftheautoresonantcon-1.IntroductionTurningisamachiningprocess,whereathinsurfacelayerofthetreatedmaterialisremovedfromawork-piecebyasharpwedge-shapedcuttingtoolformingacylindricalsurface.Thistechnologyhasbeenusedforcenturiesmainlyforcuttingvarioustypesofmetallicmaterials.However,intherecentyears,arangeofnewalloysandcompositematerialshasbeendevelopedforvariousengineeringapplications.Manyofthesenewmaterialsbecomemuchmorediculttocutwithglass.Thistechnology,calledultrasonicallyassistedturning(UAT),demonstratesarangeofbenetsinmachininghardmetalalloys:adecreaseincuttingforcesofuptoseveraltimes14,improvementinsurfacenishbyupto50%comparedtoCT5andnoisereduction6.Asformachiningofbrittlematerials,ceramicsandglasspresentlyrequireprolongedandexpensivepost-processingtoobtainthesurfacequalityrequiredforopticalcomponents;UATallowsobtainingmirrorsurfacenishinmachiningthesematerialsaswellasconsiderablereductionintoolwearandaverageUltrasonicallyassistedturningandexperimentalV.I.Babitsky,A.V.Mitrofanov,WolfsonSchoolofMechanicalandManufacturingEngineerinAbstractUltrasonicallyassistedturningofmodernaviationmaterialsamplitudeaC2515lm)superimposedonthecuttingtoolmovement.nonlinearresonantmodeofvibrationthroughoutthecuttingworkpiecesmachinedconventionallyandwiththesuperimposedprocessandnanoindentationanalysesofthemicrostructureofmodelprovidesnumericalcomparisonbetweenconventionalandcuttingforcesandcontactconditionsattheworkpiece/toolinterface.C2112004ElsevierB.V.Allrightsreserved.Ultrasonics42(2004)227502.E-mailaddress:v.silberschmidtlboro.ac.uk(V.V.Silberschmidt).0041-624X/$-seefrontmatterC2112004ElsevierB.V.Allrightsreserved.doi:10.1016/j.ultras.2004.02.001aviationmaterials:simulationsstudyV.V.Silberschmidt*LoughboroughUniversity,LeicestershireLE113TU,UKconductedwithultrasonicvibration(frequencyfC2520kHz,AnautoresonantcontrolsystemisusedtomaintainthestableExperimentalcomparisonofroughnessandroundnessforvibration,resultsofhigh-speedlmingoftheturningmachinedmaterialarepresented.Thesuggestednite-elementturningofInconel718intermsofstress/strainstate,8186www.elsevier.com/locate/ultrasmechanicsofthisprocess.Thereareonlyafewsourcesoftheworkpiece(paralleltotheX-axis,Fig.1b),orinthefeeddirection,i.e.alongtheaxisoftheworkpiece(Z-axis,Fig.1b).Aself-sustainedresonantmodeofvibrationofthiscuttingsystemisimplementedviatheautoresonantcontrolsystem,whichisdescribedindetailin9,10.ArangeofturningtestshasbeenconductedtocomparetheusageofUATandCTformachiningavi-ationmaterials.Thedetaileddescriptionofthesetestscanbefoundin5.AmongthematerialsusedforthetestsisInconel718ahigh-gradeheat-resistantNi-basedsuperalloywidelyusedintheaerospaceindustry.Thismaterialisveryabrasiveandcausesthetoolbluntingandhighcuttingtemperatureswhenmachinedconven-tionally.Thesurfacequalityobtainedbyturningisoneofthecrucialfactorsinmetalcuttingandisextremelysensitivetoanychangesinthemachiningprocess.ThesurfacenishofspecimensiscomparedintermsofaverageroughnessmeasurementðRaÞandmeasurementofroundness(thepeak-to-valleymeasure),usingtheTay-s42(2004)8186Fig.1.Experimentalsetupforultrasonicallyassistedturning(a),andaschemeofrelativemotionoftheworkpieceandcuttingtool82V.I.Babitskyetal./Ultrasonicattemptingtodescribetheprocessesintheworkpiece/cuttingtoolinteractionzoneandtheirinuenceonthestructureofthemachinedmaterial3,6,11.Theseworksstudymostlythedynamicsoftheultrasonicmachineunitandnottheresponseofthetreatedmaterialtothistechnology,whileaclearunderstandingofmechanicalprocessesinthematerialduringUATwouldcertainlyallowafurtherdevelopmentoftheUATtechnology.ThemainaimofthispaperistostudyexperimentallyandnumericallythematerialmechanicsoftheUATprocess.2.ExperimentalstudiesTheexperimentalsetupusedtostudyUATisshowninFig.1.Theworkpieceisclampedinthechuckoftheuniversallatheandrotateswithaconstantspeed.Highfrequencyelectricimpulses,fedtotheinputoftheultrasonictransducer,excitevibrationinpiezoceramicringsduetothepiezoelectriceect.Thevibrationamplitudeisintensiedintheconcentratorandtrans-mittedtothetoolholderatthethinendofthecon-centrator.Resultantvibrationofthecuttingtipxedinthetoolholderreaches15lm(i.e.30lmpeak-to-peak)atafrequencyofabout20kHz.ThevibrationcanbeappliedeitherinthedirectiontangentialtothesurfaceinorthogonalUATwithtangentialvibration(b).lorHobsonTalysurf4surfacemeasurementinstrument.Thefollowingcuttingparametersareusedtomachinetestedspecimens:depthofcutd¼0:8mm,feedrates¼0:05mm/rev,andcuttingspeedv¼17m/min.ThesameparametersareusedforbothUATandCT,withsuperimposedultrasonicvibrationinthefeeddirectionappliedforUAT.Fig.2ashowsrepresentativeaxialprolesofthemachinedsurfaceoftheInconel718.ItisobviousthatmagnitudesofRaarereducedbynearly50%forspeci-mensmachinedwithUAT.Furthermore,theregularityofthesurfaceproleisgreatlyimproved,asthesurfaceFig.2.SurfacequalityofInconel718specimensmachinedwithUATandCT:axialsurfaceproles(a),roundnessproles(b).Cuttingparameters:d¼0:8mm,s¼0:05mm/rev,v¼17m/min.direction.Apparently,thereasonfortheseimprovementsisthes42(2004)818683changeofthenatureofthecuttingprocess,whichistransformedintotheonewithmultiple-impacthigh-frequencyinteractionbetweenthecuttingtoolandchipduetoappliedultrasonicvibration.Thisleadstochangesinmaterialdeformationprocessesandfric-tionforces,andincreaseinthedynamicstinessofthelathe-tool-workpiecesystem6,11duetothevibrationfrequencylevelsconsiderablyexceedingitsnaturalfre-quency.Inadditiontomeasurementsofthesurfacequality,themicrostructureofthemachinedsurfacehasbeeninvestigated.Inconel718workpiecesaremachinedun-derthesamecuttingconditions(v¼3:6m/min,d¼0:1mm,s¼0:03mm/rev)withapplicationofultrasonicvibrationintangentialdirectionandwithoutit.Then,nanoindentationanalysesofthesurfacelayersareper-formedwiththeNanoTestPlatformmadebyMicroMaterialsLtd.Accordingtotheresultsofthesetests,thewidthofthehardenedsurfacelayer,whichresultsfromtheextensivedeformationandhightemperaturepro-cessesduringtheturningprocedures,fortheultrasoni-callymachinedspecimenishalfthesizethatoftheconventionallymachinedone(40and80lm,respec-tively).Furthermore,theaveragehardnessofthislayerforUAT(about15GPa)isahalfofthatforCTandconsiderablyclosertothehardnessoftheuntreatedmaterial(about7GPa).Thehardnessofthematerialnonlinearlyincreaseswithariseintheleveloftheresidualplasticstrains.Hence,nanoindentationtestsindicatelowerresidualstrainsinthesurfacelayerforworkpiecesmachinedwithUATandaconclusioncanbedrawnthattheUATprocedureisconsiderablymoredelicatetotheworkpiecematerial.3.NumericalanalysisofUATFiniteelement(FE)simulationsareamajortoolformodellingofmachiningprocesses.Ithasbeenusedformodellingofturningforsome30years.Theoverviewofthestateoftheartinmetalcuttingsimulationscanbefoundin13,14.However,uptotheauthorsknowledge,nomodelsforUAThavebeendevelopeduntilnow.Thetwo-dimensionalFEmodelofbothCTandUATde-becomessmootherintheaxialdirection.Aconsiderableimprovementisalsoobtainedforroundnessofma-chinedworkpieces(Fig.2b):apeak-to-valleyvalueofroundnessmeasures4.20lmforCT,whereasitattainsonly1.89lmforUAT.Hence,theroundnessisim-provedby40%whenultrasonicvibrationissuperim-poseduponthemovementofthecuttingtool.Itisworthnoticingthatsimilarresultshavebeenobtainedbyotherresearchers7,12utilisingvibrationinthetangentialV.I.Babitskyetal./UltrasonicscribedinthispaperisbasedonthecommercialFEcodeMSC.Marc15.Anorthogonalturningprocess,i.e.thecuttingprocesswherethetooledgeisnormaltobothcuttingandfeeddirections,withtangentialvibrationisconsidered.Fig.1bshowsaschemeofthemodelledrelativemotionoftheworkpieceandcuttingtool;therotationaxisofthecylindricalworkpieceisorthogonaltotheplaneofthegure.Theworkpiecemoveswithaconstantvelocity,whereasthetoolvibratesharmonicallyarounditsequilibriumpositionwithfrequencyf¼20kHzandamplitudea¼15lm,correspondingtothevaluesusedinexperimentalstudies.Otherparametersofsimulationsare:uncutchipthicknesst1¼0:1mm(whichcorrespondstothedepthofcut),rakeangleofthetoolc¼10C176,cuttingspeedV¼9m/min.Suchparametersofvibrationandofthecuttingprocessprovideseparationofthecutterfromthechipwithineachcycleofultrasonicvibration.ThematerialconstantsforagedInconel718aretakenfrom16.Kinematicalboundaryconditionsfortheworkpieceareappliedtoitsleft,rightandbottomsides(Fig.1b),whereasitstopsurfaceisfree:VxjAH¼V;VxjFG¼V;VxjHG¼V;VyjHG¼0:Thermalboundaryconditionsincludeconvectiveheattransferfromtheworkpiece,chipandtoolfreesurfacestotheenvironment:C0koT=on¼hðTC0T1Þ,wherekistheconductivity,hisaconvectiveheattransfercoe-cient,T1istheambienttemperature.ThethermaluxpassingfromthechiptothecutteralongthecontactlengthLc(Fig.1b)isdescribedasfollows:q¼HðTchipC0TtoolÞ,whereHisacontactheattransfercoecient,TchipandTtoolarechipandtoolsurfacetemperatures,respectively.Themodeltakesintoconsiderationthefollowingfactors,importantformetalturningsimulationsandaectingstressandstraingeneration:(1)contactinter-actionandfrictionatthetool-chipinterface;(2)non-linearmaterialbehaviour,includingstrain-rateeects,namelythedependenceofthematerialsyieldstressonstrainrates;(3)thermomechanicalcoupling,i.e.inter-connectionbetweenmechanicalandthermalpartsoftheproblem.AsfollowsfromFEsimulations,theUATprocessduringonecycleofvibrationcouldbedividedintofourmainstages.Duringtherststage(Fig.3a),thecutterapproachesthechip;inthesecondstage,thecuttingtoolcontactsthechipandstartspenetratingintothework-piececausingthechipseparation.Theattainmentofthemaximumpenetrationdepthischaracterizedbythehighestlevelofgeneratedstressesintheprocesszoneandmarkstheendofthesecondstage(Fig.3b).Thefollowingstageisunloading:thevelocitydirectionofthetoolchangesanditmovesbackwards,butremainsincontactwiththechipevenafterthemomentwhenthespeedofthetoolexceedsthecuttingspeed(duetotheelasticspring-backofthechip).Duringthisphase,framespersecondwiththeareaoftheimagecomprisingabout4mm2.Fig.4ademonstratesaframeoftheUATlmingshowinganinteractionbetweenthecuttingtipandworkpiece.ThedierencesbetweenCTandUATinchipseparationmanifestinsuchspecicfeaturesofthetheelasticstrainsintheprocesszonedecrease.Thelaststage,startingwiththefullseparationofthecuttingedgefromthechip,isthewithdrawalofthecutterfromthechip(Fig.3c).Theintermittentcharacterofthechip-cuttingtoolcontactdeterminesthemaindierencesinthestressdistributionforCTandUAT.ThestressstateduringCTisnearlyquasistatic,asshowninnumericalsimulations(Fig.3d),withthehighestequivalentstressesconcen-tratedinprimaryandsecondaryshearzones,i.e.zonesaroundlineBE(Fig.1b)andnexttotherakefaceEK.Conversely,thestressstateinUATisinherentlytran-sient:stressesreachmaximumlevels,similartothoseofFig.3.DistributionofequivalentstressesduringUATatdierentmomentsofasinglecycleofvibration:cutterapproachingthechip(a),cutterinfullcontactwiththechip(b),andcuttermovingawayfromthechip(c)andCT(d).84V.I.Babitskyetal./UltrasonicCT,duringthepenetrationpartofthecycleofultrasonicvibration(Fig.3b),whereasthestressmagnitudeissig-nicantlylowerduringtheotherstagesofthecycle(Fig.3aandc),whenthecuttermovesawayfromthechipornotincontactwithit.Hence,averagestressesgeneratedinthematerialand,consequently,theintegrallevelofinteractionforcesbetweenthecuttingtoolandwork-pieceareconsiderablysmallerforUAT.Thisexplainsareductioninaveragecuttingforces(byseveraltimes)reportedinmanyexperimentalstudies1,3,4.4.StudyofchipformationAchipformationprocessisoneofthemostimpor-tantcharacteristicsinmetalcutting.Hence,itisofparticularinteresttostudythedierencesinthechipformationarisingfromsuperimposedultrasonicvibra-tion.Intheexperimentalpartofthisstudy,ahigh-speeddigitalcamera(KodakEktaproHSMotionAnalyzer4540)isusedforreal-timeobservationsofthechiptoolinteractionduringbothUATandCTofInconel718.Filmingspeedisintherangefrom9000upto27000Fig.4.Chipformation:framesofhigh-speedlming(a)andnumerical(FE)simulations(b).s42(2004)8186processasthesizeandshapeoftheprocesszone,andthetypeoftheproducedchip.TheareaofthevisibleprocesszoneforUATanditssizeintheradial(vertical,Fig.4a)directionareconsiderablysmallerthanthoseforCT.DeformationprocessesforUATarelocalizedinthedirectvicinityofthecuttingedgealongthesurfaceoftheworkpieceandarenotobservedunderneaththecutter,incontrasttotheCTprocess.ThiscorrelateswellwiththeresultsofnanoindentationtestsindicatingsmallerhardenedlayerfortheUATmachinedsurface.Finally,high-speedobservationsshowedthatsuper-imposedultrasonicvibrationmakestheprocessofchipformationmoreregular,resultinginanincremental,continuouschipformationprocess.Incontrast,theobservedCTprocessproducesessentiallysegmentedchip,duetoforcedirregularvibrationofthecuttingtoolandtearing-likechipseparation.Ascanningelectronmicroscope(SEM)studyofmicrostructureofchipsproducedwithUATandCTconrmsthisobservation,revealingacontinuouschipwithsmallserrationsforUATandstronglysegmentedchipwithvividshearbandsforCT.

    注意事项

    本文(外文翻译--航空材料超声辅助车削的仿真与实验研究 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!