欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--超轻车辆设计 采用先进的汽车合成技术克服设计阻碍英文版.pdf

    • 资源ID:96318       资源大小:41.72KB        全文页数:6页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--超轻车辆设计 采用先进的汽车合成技术克服设计阻碍英文版.pdf

    ULTRALIGHT-HYBRIDVEHICLEDESIGN:OVERCOMINGTHEBARRIERSTOUSINGADVANCEDCOMPOSITESINTHEAUTOMOTIVEINDUSTRY1.INTRODUCTIONAdvancedpolymericcompositeshaveseveraladvantagesincludingpartsconsolidation,highspecificstrengthandenergyabsorption,stylingflexibility,goodnoise/vibration/harshness(NVH)characteristics,andexcellentcorrosionresistancethatsuitthemtoautomobiles.Furthermore,technologicaladvancesinprocessingandmaterialsappeartomakeadvancedcompositessuitableforhigh-volumeapplications:low-pressurefabricationprocessessuchasresintransfermolding(RTM)couldrequireverylowinvestmentcostsand,dependingonthechoiceofresinandtoolingmaterial,offerfastcycletimes,whilenewversionsofresinsandfiberspromiselowcostandhighperformance.Inaddition,recentdevelopmentsinautomotivedesigndrivetheneedforwhatispotentiallyadvancedcompositesbiggestadvantage:massreduction.Ultralight-hybridvehicledesigns,suchasRockyMountainInstitutes“hypercar”concept,necessitatestringentmass-optimizationparticularlyforthebody-in-white1,theautomotivetermfortheunfinishedbodyanditsframeorchassis.Advancedcompositebodies-in-whitehavethepotentialtobeupto67%lighterthanaconventionalsteelunibodyforequivalentsizeandsafety.However,aquicklookattheuseofadvancedcompositesintheautomotiveindustryraisesanobviousquestion:Ifadvancedcompositesaresuchwonderfulmaterials,whyaretheynotbeingused?Asidefromafewspecialtycomponentsfornichevehicles,suchasonepartintheDodgeViper,andevenfewerwhole-systemapplicationssuchGMs1991Ultraliteconceptcar,theautoindustryhasshunnedtheuseofadvancedcomposites.Evenregularstructuralcomposites,usinglow-performancereinforcementsinquasi-isotropicarrangements,arebeingappliedinlower-than-expectedquantities.Inresponse,organizationstargetingtheautomotiveindustry,suchastheAutomotiveCompositesConsortium(ACC),andcompositeproducers,includingsomeinNISTsAdvancedTechnologyProgram(ATP),areambitiouslyimplementingstrategiestospeedtheintegrationofstructuralandadvancedcompositesintotheautomobile.ButtheACCsfocusoncomponentapplicationssuchasacompositepickuptruckbox,liketheATPsfundingofmanufacturingprocessimprovementswithoutaccompanyingdesignchanges,indicateastrategyofevolutionaryintegration.Whileanevolutionaryapproachminimizesriskintheshortterm,itmaynotbetheoptimallong-termstrategytoovercomethebarrierstoputtingadvancedcompositesintocars.Justasthecombinationofanultralightbodywithahybriddrivelineprovidesa“leapfrog”approachtoincreasingfuelefficiencyanddecreasingemissions,sothewhole-systemapplicationofcompositestoanultralightmonocoqueBIWisthebestwayfortheadvancedmaterialsandautomotiveindustriesto“tunnelthrough”thebarrierstolarge-scaleimplementation.Toanautomaker,aleapfrogapproachtocompositeintegrationcouldprovidebenefitsfarout-weighingtherisksanduncertaintiesofworkingwithunfamiliarmaterialsandtechnologies.Toanadvancedmaterialssupplier,aleapfrogapproachcanpreventthe“setuptofail”scenarioexperiencedinmanyautomotivecomponentapplicationsbyoptimallyexploitingthenewmaterialsintrinsicadvantages.Inaddition,aleapfrogapproachcouldpotentiallyexpandtheadvancedmaterialsmarketbyseveralfoldormore,achievingvolumeswhichcouldlowertheirproductscosts.ThusanadvancedmaterialspushintotheBIWshouldnotbesimplyanissueofmaterialsubstitutiononepartatatime:itneedstosubstitutematerialsusingawhole-platformdesignthatmaximizesthematerialsbenefitswhileminimizingandpotentially1eliminatingmanyoftheircosts.2.TECHNOLOGIESFORVOLUMEPRODUCTIONHowcouldpolymericcompositeBIWsbecompetitivelymadeinhighvolume?Thereisnodefinitiveanswer;theslateofpotentialtechnologiesforfabricatingandassemblinganadvanced-materials-basedBIWislargeandgrowingrapidly.Thediversityoftechnologicaloptionsaddsbothuncertaintyandrobustness.Also,whileadvancedpolymericcompositesrequiresophisticateddesigntotakeadvantageofuniquepropertiessuchasanisotropy,theirhigh-volumemanufacturingandassemblytechniquesareconceptuallysimple.Themostpromisingoff-the-shelfornear-termtechnologiesforBIWmanufacturingarebrieflylistednext;afullersurveyisin.2.1RawMaterialsPolymericcompositesincorporatefibrousreinforcementinaresinmatrix.Issuesimportantforrawmaterialselectionincludecost,compatibilitywithfabricationtechnologies,mechanicalandenvironmentalperformance,andrecyclability.2.2MoldingInthevariousmoldingoperations,theintermediatefiberformandresin,combinedeitherpreviouslyordirectlyinthemold,areshapedandhardenedintotheformofthemoldingcavity.Foranall-compositeBIW,liquidcompositemolding(LCM)eitherresintransfermolding(RTM)orstructuralreaction-injectionmolding(SRIM)isgenerallyconsideredtobethemostpromisingprocess.BothRTMandSRIMutilizethermosetresinsbecauseoftheirlowviscosity,althoughcyclicthermoplasticsmaybeadaptable.LCMrequiresapreform,whichcancompriseavarietyofintermediatefiberforms.Asmentionedabove,anadvanced-compositeBIWwouldprobablyuseamorecomplexpreformwithhigher-performancefibers.Compressionmolding,normallydonewithSheetMoldingCompound(SMC),isahigh-pressureprocesswithalowercycletimeandgenerallyabettersurfacefinishthanLCM,suitingittoBIWapplicationswithinthecurrentsteelinfrastructure.However,likeglass,afullycompression-moldedBIW,duetoitsweight,maynotbeabletoreapadequatesynergieswithahybriddrive,norhaveadequatecrashworthiness.BIWdesigns,lessmaturebuthigher-performancemanufacturingtechnologiessuchasRTMorSRIMappeartobemoreapplicabletoanall-compositeBIW.2.3TechnologicalBarriersUnliketheoveralldesignstrategyforcompositeBIWs,noneofthecompositetechnologieslistedaboverequirefundamentaladvancestopermitvolumeBIWmanufacturing.Eachneedsvaryingdegreesofrefinementbutseemstofacenointractabletechnologicalbarriers:implementationrequirestechnologyoptimizationandintegrationratherthaninvention.Someofthekeytechno-economicbarriersaredescribednext.2.3.1Carbon-FiberCostThecostofcarbonfiberisoftencitedasthemostformidablebarriertocommercialapplicationsforcarbon-fibercomposites.ForPAN-basedcarbonfiber,thecombinationofexpensiveprecursorandlow-volume,specializedequipmenthasledtoitshighcost.However,twoenterprisingdomesticmanufacturers,ZoltekandAkzoNobel,offerlow-cost,hightowcommodity-gradecarbonfiber.Bulkcreelpricesfortheircontinuousfiberarecurrentlyaslowas$17.60/kg.Centraltofurtherdecreasesinpricearecheaperversionsoftheprecursor,whichhas“nocostcontrollingdifferences”fromthecommodity-gradeacrylicfiberthatcosts$3.00/kg.toproduce.Inaddition,highervolumesofproductionareneededtolowerunitcapitalandlaborcosts.High-volumemanufacturingcouldsoonberealized:ZoltekandAkzoplannear-termexpansion.Theirstrategycouldovercomethecostbarrierforadvanced2compositeswithasupply-pushoflow-costfiberintothetransportationmarket.2.3.2PreformingThedifficultyofproducingcomplexpreformsatreasonablecostiscitedalmostasoftenascarbon-fibercostasthechieftechnicalbarriertohigh-volumeadvancedcompositesmanufacturing.PrincetonsConferenceonBasicResearchNeedsforVehiclesoftheFuturerecentlygavepreformingthehighestpriorityamongneededresearchandinnovation.Currently,automakersfavorquasi-isotropicchoppedorcontinuousmatpreformsofglassfiber,which,aswasmentionedabove,aretooweak,isotropic,andhenceheavyforamass-optimizedBIW.Theanisotropicstrategiescommoninaerospaceapplications,suchasprepregtapesandhandlay-upwithautoclaving,aretooslowandcostlyforcars.Fortunately,theproblemofcreatinglow-costcomplexpreformsmaynotbeintractable:severalinnovativetechnologiescouldpermittherapidandinexpensivefabricationofcomplex,net-shapepreforms.FabricssuchasCOTECHarenon-crimp,stitch-bondedlayersofunidirectionalcontinuousfiberthat,accordingtotheirmanufacturer,canbecheaperthanrandommatyetperformaboutaswellasunidirectionaltape.Astitch-bondingprocesscaninexpensivelycreatecomplexpreformsbycombiningaquasi-isotropicbaseoffabricwithstrategicallyplacedinsertsofunidirectionalfabricorrovingatmaximumloadpoints.Alternatively,theCompFormprocessclaimsevencheaperandfastercomplexpreformingpotential,substitutingUV-curablebindersforfabricstitchesalthoughthisprocesscannotbeusedwithacarbon-intensivepreform.Forcreatingnet-shapepreforms,fastultrasoniccutting,usingnestingpatternstominimizewaste,couldbeagoodcomplementtostitch-bonding.Obviously,complexpreformsrequireheavyfront-endengineeringtoavoidresinflowproblemssuchasracetrackingandunexpectedfibermovements.Nevertheless,theseprocesseshavereal-worldvalidity:bothUVstitchingandultrasoniccuttingwereusedtocreateacomplexpreformforaBuickRivierabumperbeam.2.3.4SurfaceQualityBecausecompositemonocoquesrequirestructuralcompositeswithClassAsurfaces,asignificantbarrierisproducingcomponentswithbothhighfiber-volumefractionsandsmooth,porosity-freeexteriors.IfsofttoolingisusedtocapturestrategicadvantagesortoensurecompatibilitywithE-beamcuringforcycle-timereductions,thechallengeofobtainingClassAsurfacesbecomesmorecomplexandimportant.WhileClassAsurfacescouldbedifficultforstructuralcomposites,theyarebynomeansimpossible.Thestitch-bondedfabricdescribedaboveforcomplexpreformswetsouteasilyandhasasurprisinglysmoothsurface,asitismadeupofunidirectionallayers,sosubjecttoresinconsistencyandtoolingsurfacequality,itcouldsimplybesurface-finishedwithaClassAmoldandpainted,savingtheinvestmentandoperationcostsofconventionalsteelfinishingprerequisitetopaintingexteriorBIWparts.Anevensimplerapproachcouldalsoavoidpaintingbyapplyingoneofseveralproprietarylay-in-the-moldClassAcolorcoatpolymerproducts,orperhapsinjectathermoplasticcolorcoatintoaClassAmoldandthenlayinthestructuralelementsbehinditusingacompatibleresinsystem.3.OVERCOMINGTHEBARRIERSTheresultsofthesesurveysledonesetofinterviewerstoconcludethatsince“theadoptionofstructuralcompositesfacesmultiplebarriers,noonesimplequickfixwillrapidlyacceleratetheirdeployment.”Yetdespitecompleximplementationdetails,thereisarelativelysimpleifun-expectedconceptualframeworktointegrateadvancedcompositesintoautomaking.Themosteffectivewaytoovercomethebarriersappearstobereplacingtodaysdominantstrategyofincremental,part-by-partmaterialssubstitutionwithawhole-system-designed,all-advanced-compositeBIW.This“leapfrog”approachintegratesaclean-sheetdesign,high-performancerawmaterials,3existingmanufacturingmethods,andaradicallysimplerandsmallerassemblyprocess.Itholdspromiseofbypassingmanybarriersandofchangingautomakersattitudetowardadvancedcompositesfroma“necessaryevil”orindefinitelypostponableinconvenienceintoapromptandlucrativeopportunity.Waystocircumventmajorbarriersaresurveyednext.3.1CostComponent-by-componentsubstitutionofcompositesforsteelcannotoccuruntilmarket-determinedmaterialpricesjustifysubstitutiononasingle-partbasis,eitherthroughcheapermanufacturingorthroughsavedgasoline,withlittleifanycreditformassdecompoundingandevenforthesavedsteelitself.Thesubstitutedmaterialsremaincostly,however,becauseonlysmallvolumesarebeingbought.Creditshouldbe,butisnotalways,takenforthemodestreductionsinpartscount;asaresult,thinkingincomponentterms-makesithardorimpossibletoquantifysavedassemblycosts.Finally,integrationofacompositecomponentwithinasteelBIWcanraiseoverallassemblycosts,especiallyifthecompositepartscycletimesarelongerortheirdimensionsandotherpropertiesaremorevariable.Asaresult,integrationrequirementsofteneconomicallyfavorcompressionmoldingoverRTM,leadingtopartswithsuboptimalperformancefordemandingstructuralapplications.Incontrast,clean-sheetwhole-platformredesigncanyieldradicalreductionsinpartscount,size,andcomplexity:thetypicalBIWwouldhaveonlyafewparts,andassemblyeffortwoulddropbyanorderofmagnitude.Buyingthespecialmaterialsinbulkshouldyielddiscountsand,throughincreasingproductionvolumes,cutmarketprices.Productionvolumescouldbeoptimizedforconvenienceandmarketdemand,ratherthanartificiallyinflatedtomeetamortizationrequirementsforsteeltoolsandpresses.Productionflexibilitycouldberetainednotonlyinvolumebutalsoinstyling.Finally,savingscouldaccumulate“downstream”fromBIWmanufacturingthroughamuchsmallerandsimplerdrivelineandothercomponents,shorterproductcycletimes,andgreaterproductionflexibility.3.2SafetyAdvancedcompositeshavefundamentallydifferentenergyabsorptioncharacteristicsandfailuremodesthansteel.Theyfituncomfortablyintothetraditionalsafety-designparadigm,especiallywhenappliedbysteel-orienteddesignerswhotreatadvancedcompositesas“blacksteel”.Inadequateredesigncanyieldsuspectcompositeparts,creatinganimpressionofpoorsafety.However,clean-sheetdesignofanall-compositeBIWcantakeadvantageofthesematerialsuniqueproperties,including,inpropershapes,specificenergyabsorptionfivetimesthatofsteel.Equivalentsafetyforanultralight,usingsuperiormaterialsanddesigntocompensateforlightmass,requiresanewdesignapproachimplementableonlyatthesystemlevel,notinisolatedcomponentsalone.Toexplicatethedesignparadigmforanall-compositeBIW,RMIiscurrentlypreparingaprimeronultralightcomposite-basedcarsafetyprinciplesandpraxis.3.3RiskLesswidelyperceivedthantheriskofleapfroggingtoanall-compositeBIWistheinherentandoftenruinousriskofthepresentBIWmanufacturinginfrastructure.Itsinherentlyhighfixedcostsandlowvariablecostsmakeprofitsextremelysensitivetosalesvolumes,endangeringincomewheneverdemandfalters.Furthermore,thehighfixedcostsimpellargeproductionruns,whichshrinkmodelvarietyandfocusmoreriskonthemarketsuccessofeachmodel.Longproductcycles,too,makenewmodelslagbehinddynamicpublictastes,furtherheighteningtheriskofdisastrousventures.Conventionalcomponent-baseduseofcomposites,forcedintothesameparadigm,couldcarrysimilarrisks.Incontrast,soft-tooled,net-shapeadvanced-compositemonocoquescouldofferstrategicadvantageswithapreciselyoppositeriskprofile.Thetoolingcouldbecheaplyfabricatedwithfewparts,

    注意事项

    本文(外文翻译--超轻车辆设计 采用先进的汽车合成技术克服设计阻碍英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!