欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--对聚合物的温度和凝固冷却系统在注射成型的影响 英文版.pdf

    • 资源ID:97146       资源大小:609.11KB        全文页数:6页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--对聚合物的温度和凝固冷却系统在注射成型的影响 英文版.pdf

    temperaturePujos,Cedex,greatmoldingnumercoolingistoeffectandqualityfastestlarindustrieincreasewellknowneconomicallymermeltsufficientlysothatthepartcanbeejectedwithoutanysignificantdeformation2.Anefficientcoolingsystemdesignofthecoolingchannelsaimingatreducingcycletimemustminimizesuchundesireddefectsassinkmarks,differentialshrinkage,ther-malresidualstressbuilt-upandpartwarpage.Duringthepost-fill-ingandcoolingstagesofinjectionmolding,hotmoltenpolymertouchesthecoldmoldwall,andasolidlayerformsonthewall.tiontothecoolantmovingthroughthecoolingchannelsandbynaturalconvectiontotheairaroundtheexteriormoldsurface.Thecoolantisflowingthroughthechannelsatagivenflowrateandagiventemperaturewhichisconsideredconstantthroughoutthelengthofthechannel.Inthiswork,time-dependenttwo-dimensionalmodelisconsideredwhichconsistsofanentirecomputationaldomainofthecavity,moldandcoolingchannelsurfaces.ThecyclictransienttemperaturedistributionofthemoldandpolymerT-shapecanbeobtainedbysolvingthetransientenergyequation.*Correspondingauthor.Tel.:+330540006348;fax:+330540002731.AppliedThermalEngineering29(2009)17861791ContentslistsavailableE-mailaddress:hassanenscpb.fr(H.Hassan).cesswherepolymerisinjectedintoamouldcavity,andsolidifiestoformaplasticpart.Therearethreesignificantstagesineachcy-cle.Thefirststageisfillingthecavitywithmelthotpolymerataninjectiontemperature(fillingandpost-fillingstage).Itisfollowedbytakingawaytheheatofthepolymertothecoolingchannels(coolingstage),finallythesolidifiedpartisejected(ejectionstage).Thecoolingstageisofthegreatestimportancebecauseitsignifi-cantlyaffectstheproductivityandthequalityofthefinalproduct.Itiswellknownthatmorethanseventypercentofthecycletimeintheinjectionmoldingprocessisspentincoolingthehotpoly-distributionofthemoldandpolymer,therefore,theireffectonthesolidificationdegreeofthatpolymer.AfullytransientmoldcoolinganalysisisperformedusingthefinitevolumemethodforaT-shapeplasticmoldwithsimilardimensionsto5,asshowninFig.1.Differentcoolingchannelspositionsandformsarestudied.2.MathematicalmodelTheheatofthemoltenpolymeristakenawaybyforcedconvec-1.IntroductionPlasticindustryisoneoftheworldsrankedasoneofthefewbillion-dolinjectionmoldedpartscontinuestoplasticinjectionmoldingprocessiscientmanufacturingtechniquesforprecisionplasticpartswithvariousshapesatlowcost1.Theplasticinjectionmolding1359-4311/$-seefrontmatterC2112008ElsevierLtd.Alldoi:10.1016/j.applthermaleng.2008.08.011growingindustries,s.Demandforeveryyearbecauseasthemosteffi-producingofandcomplexgeometryprocessisacyclicpro-Asthematerialcoolsdown,thesolidskinbeginstogrowwithincreasingtimeasthecoolingcontinuesuntiltheentirematerialsolidifies.Overtheyears,manystudiesontheproblemoftheopti-mizationofthecoolingsystemlayoutininjectionmoldingandphasechangeofmoldingprocesshavebeenmadebyvariousresearchersandoneswhichfocusedintensityonthesetopicsandwillusedinoursystemdesignandvalidationsare36.ThemainpurposeofthispaperistostudytheeffectofthecoolingchannelspositionanditscrosssectionshapeonthetemperatureCoolingsystemleadstominimumcoolingtimeisnotachievinguniformcoolingthroughoutthemould.C2112008ElsevierLtd.Allrightsreserved.EffectofcoolingsystemonthepolymerduringinjectionmoldingHamdyHassan*,NicolasRegnier,CedricLebot,CyrilLaboratoireTREFLE-Bordeaux1-UMR8508,SiteENSCPB,16Av.PeyBerland,33607PessacarticleinfoArticlehistory:Received15November2007Accepted19August2008Availableonline30August2008Keywords:PolymerSolidificationInjectionmoldingabstractCoolingsystemdesignisofiscrucialnotonlytoreduceityofthefinalproduct.Aperformed.Acyclictransientofthemoldcoolingstudycoolingsystemdesign.Theturedistributionofthemoldtivityoftheprocess,thecoolingshouldbenecessaryfortheAppliedThermaljournalhomepage:www.elsevirightsreserved.GuyDefayeFranceimportanceforplasticproductsindustrybyinjectionmoldingbecauseitcycletimebutalsoitsignificantlyaffectstheproductivityandqual-icalmodelingforaT-moldplasticparthavingfourcoolingchannelsisanalysisusingafinitevolumeapproachiscarriedout.Theobjectivedeterminethetemperatureprofilealongthecavitywalltoimprovetheofcoolingchannelsformandtheeffecttheirlocationonthetempera-thesolidificationdegreeofpolymerarestudied.Toimprovetheproduc-timeshouldbeminimizedandatthesametimeahomogeneouscoolingoftheproduct.TheresultsindicatethatthecoolingsystemwhichandsolidificationatScienceDirectEngineeringer.com/locate/apthermengdissipationoftheheatthroughphasechangeprocess.Thistech-plicit/implicittechniquealreadyvalidatedinpreviousstudiesbyVincent8,andLeBot9thatisbasedonthetechniqueNewSource”ofVoller10.Thismethodproposestomaintainthenodeswherephasechangeoccurstothemeltingtemperature.Thissolu-tionisrepeateduntiltheconvergenceofthetemperaturewiththesourcetermequalstothelatentheat.Thesourcetermisdiscret-izedby:Sc¼qLfofsot¼qLffnþ1sC0fnsDtð5ÞThesolidfractionwhichisfunctionofthetemperatureisline-arizedas:NomenclatureCP(J/kgK)specificheatatconstantpressurefssolidfractionh(W/m2K)heattransfercoefficientKnumberoftheinternaliterationsLlatentheatoffusion,J/kgnnumberoftheexternaliterationsNnormaldirectionScsourcetermT(K)temperaturet(s)timeH.Hassanetal./AppliedThermalEngineeringniqueisappliedonfixednodesandtheenergyequationinthiscaseisrepresentedasfollow:qCPoTot¼r:ðkrTÞþScð2ÞAndthesourcetermScisrepresentedby:Sc¼qLfofsotð3Þwherefs(T)=0.0atTC31Tf,(fullliquidregion)0C30fsC301,atT=Tf(iso-thermalphasechangeregion)and,fs(T)=1atTC30Tf(fullsolidregion).Onthewholedomain,thefollowingboundaryconditionsareappliedC0koToN¼hcðTC0TcÞ2C1;andC0koToN¼haðTC0TaÞ2C2:ð4Þ3.NumericalsolutionThenumericalsolutionofthemathematicalmodelgoverningthebehaviorofthephysicalsystemiscomputedbyfinitevolumemethod.TheequationsaresolvedbyanimplicittreatmentforqCPoTot¼r:ðkrTÞð1ÞInordertotakeintoaccountthesolidification,asourcetermisaddedtotheenergyequationcorrespondingtoheatabsorptionorheatrelease7,whichtakesinconsiderationtheabsorptionorthethedifferenttermsoftheequationssystem.Whenwetakeincon-siderationthesolidificationeffect,theenergyequationissolvedwithafixedpointalgorithmforthesolidfraction.Foreach,itera-tionofthatfixedpoint,weusediscretizationwithtimehybridex-0.20.40.20.0040.030.004P2P3P4P1P6P7P5Exteriorair,freeconvection,haCoolingchannels,forcedconvection,hfFig.1.MoldstructurewithaT-shapeproductandfourcoolingchannels(Dim.Inm).Greeksymbolsk(W/mK)thermalconductivityq(kg/m3)densityC1interiorsurfaceofthecoolingchannelsC2exteriorsurfaceofthemoldSubscriptsaambientairccoolingfluidfphasechange0.010.010.010.010.010.02A1A2A3A4A5A7B1B2B3B4B5B7C1C2C3C4C5D1D2D3D4D50.040.020.010.015PolymerFig.2.Differentcoolingchannelspositions(Dim.Inm).29(2009)178617911787fnþkþ1Ks¼fnþkKsþdFsdTC18C19nþkKðTnþkþ1KC0TnþkKÞð6ÞThen,weforcethetemperaturetotendtothemeltingtemper-aturewherethesourcetermisnotnullbyupdatingthesourceterm:Skþ1c¼SkcþqCpðTC0TfÞDtð7ÞTheenergyequationisdiscretizedasfollow:qCPDtC0qLfDtdFdTC18C19nþkK!Tnþkþ1KC0r:ðkrTÞnþkþ1K¼qLfDtðfnþkþ1KsC0fnsÞC0qLfDtdFdTC18C19nþkKTfþqCPDtTnð8ÞWith:dFdT!C01if0C30fnþkKsC301anddFdT¼0iffnþkKs¼0or1ð9ÞThisprocessallowsdifferentiatingthetemperaturefieldandso-lidfractioncalculatedatthesameinstantandthelinearsystemissolvedbycentraldiscretizationmethod11.Foreachinternaliter-ation,theresolutionofthatequationprovidesfnþkþ1KsandTnþkþ1K.Theconvergenceisachievedwhenthecriteriaofthesolidfractionandtemperatureareverifiedby:fnþkþ1KsC0fnþkKsC13C13C13C13C13C13C302fand;Tnþkþ1KC0TnþkKC13C13C13C13C13C13C302Tð10ÞFurtherdetailsonthenumericalmodelanditsvalidationarepresentedin9.thehorizontaldirection(betweenpositionsB2andB5orpositionsA2andA5whichhavethemaximumsolidificationpercent).WhenwecomparethesolidificationpercentfordifferentlocationsoftheupperpositionsCandD,wefindthatasthechannelapproachestotheproductinthehorizontaldirectionthesolidificationpercentincreases,andthecoolingrateincreaserapidlycomparedwiththeeffectoflowerposition.Wenoticethat,theeffectofthecoolingchannelpositiononthetemperaturedistributionandsolidificationdecreasesasthecoolingtimeaugmentstohighervalueanditsef-1788H.Hassanetal./AppliedThermalEngineering4.ResultsanddiscussionAfulltwo-dimensionaltime-dependentmoldcoolinganalysisininjectionmoldingiscarriedoutforaplatemouldmodelwithT-shapeplasticmoldandfourcoolingchannelsasindicatedinFig.1.Duetothesymmetry,halfofthemoldismodeledandana-lyzed.Allthecoolingchannelshavethesamesizeandtheyhavediameterof10-mmeachincaseofcircularchannels.ThecoolingoperatingparametersandthematerialpropertiesarelistedinTa-bles1and2,respectively,andtheyareconsideredconstantduringallnumericalresults5,7.Eachnumericalcycleconsistsoftwostages,coolingstagewherethecavityisfilledwithhotpolymerinitiallyatpolymerinjectedtemperature,theejectionstagewherethecavityisfilledwithairinitiallyatambienttemperature.Figs.3and4showthecyclictransientvariationsofthemouldtempera-turewithtimefor16smoldcoolingtimeatlocations;(P1,P2,P3,P4)besidethemouldwallsandP5toP7insidethemouldwalls,respectively(Fig.1)andthatincaseofappliedthesolidifica-tionandwithoutappliedsolidification.Theyaresimulatedforthefirst30cyclesincaseofcircularcoolingchannelsposition(A5,D3)asshowninFig.2.Wefindthat,thesimulatedresultsareingoodagreementwiththetransientcharacteristicofthecyclicmoldtem-peraturevariationsdescribedin5.Itisfoundthatthereisaslightlydifferenceintemperaturesvaluesbetweenthetworesults,thusduetothedifferenceinnumericalmethodusedandtheaccu-racyinthenumericalcalculations.Thefiguresshowthat,therela-tivelytemperaturefluctuationislargestnearthecavitysurfaceanddiminishesawayfromthecavitysurface.Wefindthatthemaxi-mumamplitudeoftemperaturefluctuationduringthesteadycyclecanreach10C176Cwithoutapplyingsolidificationand15C176Cincaseofapplyingthesolidification.4.1.EffectofcoolingchannelsformAnefficientcoolingsystemdesignprovidinguniformtempera-turedistributionthroughouttheentirepartduringthecoolingpro-cessshouldensureproductqualitybypreventingdifferentialshrinkage,internalstresses,andmouldreleaseproblems.Italsoshouldreducetimeofcoolingandacceleratethesolidificationpro-cessoftheproducttoaugmenttheproductivityofthemoldingTable1CoolingoperatingparametersCoolingoperatingparameterCoolingoperatingparameterCoolantfluidtemperature30C176CAmbientairtemperature30C176CPolymerinjectedtemperature220C176CHeattransfercoefficientofambientair77W/m2KTemperatureoffusionofpolymer110C176CHeattransfercoefficientinsidecoolingchannel3650W/m2KLatentheat115kJ/Moldopeningtime4skgprocess.Todemonstratetheinfluenceofthecoolingchannelsformonthetemperaturedistributionthroughoutthemouldandsolidi-ficationprocessoftheproduct,weproposedthreedifferentcrosssectionalformsofthecoolingchannels,circular,square,rectangu-lar1withlongtowidthratioof0.5andrectangular2withwidthtolongratioof0.25.Twocasesarestudied;firstcase,allthecoolingchannelshavethesamecrosssectionalarea,andthesecondcase,theyhavethesameperimeter.Thecomparisoniscarriedoutforthesamecoolingchannelsposition(A5,D3).Fig.5showsthesolidificationpercent(calculatednumericallyasthesummationofthesolidfractionofeachelementmultipliedbytheareaofthatelementtototalareaoftheproduct)fordiffer-entformswithdifferentcoolingtime.Thefigureindicatesthattheeffectofcoolingchannelsformonthecoolingratedecreaseswithincreasingthecoolingtime.Italsoshowsthatthecoolingchannelformrectangle2hasthemaximumsolidificationpercentforcase1,andincase2thechangingofthecoolingchannelsformhasnotasensibleeffectonthesolidificationpercent.Thesameresultscanbeobtainedwhenwecomparedthesolidificationintheprod-uctandthetemperaturedistributionthoughthemouldfordiffer-entformswiththesamecrosssectionalareaattheendofthecoolingstageforcoolingtime24sforcoolingcycle25,asshowninFigs.6and7,respectively.Theresultsindicatethatthecoolingprocessisimprovedasthecoolingchannelstendtotaketheformoftheproduct.4.2.EffectofcoolingchannelspositionToinvestigatetheeffectofthecoolingchannelsposition,wedi-videdtheproposedpositionsintofourgroups,groupsAandBfordifferentpositionsofthebottomcoolingchannel,withafixedpo-sitionofthetopcoolingchannel,andwithviceversaforgroupsCandDforthesamecoolingchannelform(circular)asillustratedinFig.2.Fig.8representstheeffectofdifferentcoolingchannelpositionsontheofsolidificationpercentattheendof25thcoolingcycleforgroupsAandB(lowercoolingchanneleffect),CandD(uppercool-ingchanneleffect)withcoolingtime.Itindicatesthatforlowercoolingchannelpositioneffect,thecoolingrateincreasesandhencethesolidificationpercentofthepolymerincreasesasthecoolingchannelapproachesthepolymerintheverticaldirection(positionBhassolidificationpercentgreaterthanpositionA,andwiththesamepositionsCandD).Thefigureshowsalsothemostefficientcoolingrateisobtainedasthecoolingchanneltakesthepositionbetween20%and50%throughtheproductlengthforTable2MaterialpropertiesMaterialDensity(kg/m3)Specificheat(J/kgK)Conductivity(W/mK)Mould767042636.5Polymer93818000.25Air1.1710060.026329(2009)17861791fectonthecoolingrateoftheproductisnotthesamefordifferentpositions.Engineering6065abH.Hassanetal./AppliedThermalThesolidificationdegreedistributionthroughtheproductattheendofcoolingstageattheendofcoolingtime24sand25thcool-ingcyclefordifferentlocationsofcoolingchannelisshowninFig.9,andthetemperaturedistributionthroughoutthemouldandthepolymeratthesameinstantfordifferentcoolingchannelsTemperature,oCTime,s0200400600303540455055P1P2P3P4Fig.3.Temperaturehistoryofthefirst30cyclesatlocationsTime,s3035404550556065P5P6P7abTemperature,oC0200400600Fig.4.Temperaturehistoryofthefirst30cyclesatlocationsSolidificationpercentCoolingperiod(constantperimeter-)Coolinvgperiod(constantarea)+1616182022242628300.680.720.760.80.840.880.920.96CircleRectangle1Rectangle2SquareCircleRectangle1Rectangle2Square+30282624222018Fig.5.Changingthesolidificationpercentofthepolymerpartwithcoolingtimefordifferentcoolingchannelforms.707529(2009)178617911789positionisshowninFig.10.Whenweexaminethesolidificationdegreeoftheproductandthetemperaturedistributionthroughoutthemoldfordifferentpositions,wefindthatasthecoolingchannelpositionmovestowardtheproducts,thehomogeneityofthetem-peraturedistributionthroughoutthepolymerandthemoldduringTemperature,oCTime,s03035404550556065P1P2P3P4600500400300200100P1toP4(a)withoutsolidification(b)withsolidification.Time,s30354045505560657075P5P6P7Temperature,oC0200400600P5toP7(a)withoutsolidification(b)withsolidification.Fig.6.Solidificationpercentdistributionthroughtheproductfordifferentcoolingchannelsforms(a)rectangular2and(b)circularhavingthesamecrosssectionalarea.

    注意事项

    本文(外文翻译--对聚合物的温度和凝固冷却系统在注射成型的影响 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!