欢迎来到人人文库网! | 帮助中心 人人文库renrendoc.com美如初恋!
人人文库网
首页 人人文库网 > 资源分类 > DOC文档下载

外文翻译--新的封闭式并联迷你机器人的直接运动学正解.doc

  • 资源大小:51.50KB        全文页数:6页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:5
游客快捷下载 游客一键下载
会员登录下载
下载资源需要5

邮箱/手机号:
您支付成功后,系统会自动为您创建此邮箱/手机号的账号,密码跟您输入的邮箱/手机号一致,以方便您下次登录下载和查看订单。注:支付完成后需要自己下载文件,并不会自动发送文件哦!

支付方式: 微信支付    支付宝   
验证码:   换一换

友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--新的封闭式并联迷你机器人的直接运动学正解.doc

外文资料CLOSEDFORMDIRECTKINEMATICSSOLUTIONOFANEWPARALLELMINIMANIPULATORINRECENTYEARS,MANYRESEARCHERSHAVESHOWNAGREATDEALOFINTERESTINSTUDYINGPARALLELMANIPULATORSSUCHMECHANISMSAREMOSTSUITABLEFORAPPLICATIONSINWHICHTHEREQUIREMENTSFORACCURACY,RIGIDITY,LOADTOWEIGHTRATIO,ANDLOADDISTRIBUTIONAREMOREIMPORTANTTHANTHENEEDFORALARGEWORKSPACETHEFAMOUSSTEWARTPLATFORMSTEWART,1965ISPROBABLYTHEFIRSTSIXDEGREEOFFREEDOMSIXDOFPARALLELMECHANISMWHICHHASBEENSTUDIEDINTHELITERATUREITCONSISTSOFAMOVINGPLATFORMANDABASEWHICHARECONNECTEDBYMEANSOFSIXINDEPENDENTLIMBSMANYRESEARCHERSHAVECONSIDEREDTHESTEWARTPLATFORMASAROBOTMANIPULATOREG,FICHTERANDMACDOWELL,1980;HUNT,1983;YANGANDLEE,1984;FICHTER,1986OTHERTYPESOFSIXDOFPARALLELMANIPULATORSHAVEBEENINTRODUCEDANDSTUDIEDINLITERATUREEG,KOHLIETAL,1988;HUDGENSANDTESAR,1988;TSAIANDTAHMASEBI,1991AWALDRONANDHUNT1987DEMONSTRATEDTHATKINEMATICBEHAVIOROFPARALLELMECHANISMSHASMANYINVERSECHARACTERISTICSTOTHATOFSERIALMECHANISMSFOREXAMPLE,DIRECTKINEMATICSOFAPARALLELMANIPULATORISMUCHMOREDIFFICULTTHANITSINVERSEKINEMATICS;WHEREAS,FORASERIALMANIPULATOR,THEOPPOSITEISTRUEDIEUDONNEETAL1972APPLIEDNEWTONRAPHSONSMETHODTOSOLVEDIRECTKINEMATICSOFAMOTIONSIMULATORIDENTICALTOTHESTEWARTPLATFORMBEHI1988USEDASIMILARTECHNIQUETONUMERICALLYSOLVETHEDIRECTKINEMATICSPROBLEMOFAPARALLELMECHANISMSIMILARTOTHESTEWARTPLATFORMGRIFFISANDDUFFY1989ASWELLASNANUAETAL1990STUDIEDDIRECTKINEMATICSOFSPECIALCASESOFSTEWARTPLATFORM,INWHICHPAIRSOFSPHERICALJOINTSARECONCENTRICONEITHERTHEPLATFORMORBOTHTHEBASEANDTHEPLATFORMTHEYWEREABLETOREDUCETHEPROBLEMTOANEIGHTHDEGREEPOLYNOMIALINTHESQUAREOFASINGLEVARIABLETOTALDEGREEOFSIXTEENHOWEVER,ASMENTIONEDBYGRIFFISANDDUFFY1989,PAIRSOFCONCENTRICSPHERICALJOINTSMAYVERYWELLPRESENTDESIGNPROBLEMSLINETAL1990SOLVEDDIRECTKINEMATICSOFANTHERCLASSOFSTEWARTPLATFORMS,INWHICHTHEREARETWOCONCENTRICSPHERICALJOINTSONTHEBASEANDTWOMORECONCENTRICSPHERICALJOINTSONTHEPLATFORMTHELATTERCLASSOFSTEWARTPLATFORMSSUFFERFORMLACKOFSYMMETRYANDCONCENTRICSPHERICALJOINTSARESTILLNEEDEDINTHEIRCONSTRUCTIONOTHERRESEARCHERHAVEALSOBEENABLETOOBTAINCLOSEDFORMSOLUTIONSFOROTHERSPECIALFORMSOFTHESTEWARTPLATFORMEG,INNOCENTIANDPARENTICASTELLI,1990;PARENTICASTELLIANDINNOCENTI,1990ITISWORTHMENTIONINGTHAT,TOTHEBESTOFOURKNOWLEDGE,NOONEHASYEBEENABLETOOBTAINACLOSEDFORMDIRECTKINEMATICSSOLUTIONFORTHEGENERALSTEWARTPLATFORMWITHSIXINDEPENDENTLIMBSRECENTLY,RAGHAVAN1991USEDANUMERICALTECHNIQUEKNOWNASPOLYNOMIALCONTINUATIONTOSHOWTHATTHEREAREFORTYSOLUTIONSFORTHEDIRECTKINEMATICSOFTHESTEWARTPLATFORMOFGENERALGEOMETRYMURTHYANDWALDRON1990A,1990BHAVEBEENABLETORELATETHEDIRECTKINEMATICSOFSOMEPARALLELMECHANISMSTOTHEINVERSEKINEMATICSOFTHEIRSERIALDUALMECHANISMSINTHISPAPER,CLOSEDFORMDIRECTKINEMATICSOLUTIONFORASIXDOFPARALLELMINIMANIPULATORISPRESENTEDTHEMINIMANIPULATORISONEOFTHEHIGHSTIFFNESSANDHIGHRESOLUTIONMECHANISMSINTRODUCEDBYTSAIANDTAHMASEBI1991A,1991BFORFINEPOSITIONANDFORCECONTROLINAHYBRIDSERIALPARALLELMANIPULATORSYSTEM,ITWILLBESHOWNTHATDIRECTKINEMATICSOFTHEMINIMANIPULATORINVOLVESSOLVINGANEIGHTHDEGREEPOLYNOMIALINTHESQUAREOFASINGLEVARIABLELETSUBSCRIPTIINTHISSECTIONANDTHERESTOFTHISWORKREPRESENTNUMBERS1,2,AND3INACYCLICMANNERTHEMINIMANIPULATORCONTAINSTHREEINEXTENSIBLELIMBS,PIRITHELOWERENDOFEACHLIMBISCONNECTEDTOASIMPLIFIEDFIVEBARLINKAGEDRIVERANDCANBEMOVEDFREELYONTHEBASEPLATETHEDESIREDMINIMANIPULATORMOTIONISOBTAINEDBYMOVINGTHELOWERENDSOFITSTHREELIMBSONITSBASEPLATETWODOFUNIVERSALJOINTSCONNECTTHELIMBSTOTHEMOVINGPLATFORMTHELOWERENDSOFTHELIMBSARECONNECTEDTOTHEDRIVERSTHROUGHTHREEMOREUNIVERSALJOINTSNOTETHATONEOFTHEAXESOFTHEUPPERUNIVERSALJOINTISCOLLINEARWITHTHELIMB,WHILETHEOTHERAXISOFTHEUPPERUNIVERSALJOINTASWELLASONEOFTHEAXESOFTHELOWERUNIVERSALJOINTAREALWAYSPERPENDICULARTOTHELIMBTHISARRANGEMENTISKINEMATICALLYEQUIVALENTTOALIMBWITHASPHERICALJOINTATITSLOWERENDANDAREVOLUTEJOINTATITSUPPERENDPOINTCIISTHEOUTPUTPOINTOFADRIVERATPOINTDI,THEREISANACTUATORONEACHSIDEOFTHEBASEPLATETODRIVELINKSDIAIANDDIBITHESIMPLIFIEDFIVEBARDRIVERSARECOMPLETELYSYMMETRICASARESULT,COORDINATIONBETWEENACTUATORROTATIONSCANBEEASILYACCOMPLISHEDNAMELY,ANGULARDISPLACEMENTOFANOUTPUTPOINTCIISOBTAINEDBYEQUALACTUATORROTATIONS,ANDITSRADIALDISPLACEMENTISOBTAINEDBYEQUALANDOPPOSITEACTUATORROTATIONSSIMPLIFIEDFIVEBARLINKAGESANDINEXTENSIBLELIMBSAREUSEDTOIMPROVEPOSITIONALRESOLUTIONANDSTIFFNESSOFTHEMINIMANIPULATORSINCETHEMINIMANIPULATORACTUATORSAREBASEMOUNTED;HIGHERPAYLOADCAPACITY,SMALLERACTUATORSIZES,ANDLOWERPOWERDISSIPATIONCANBEOBTAINEDINADDITION,TOACHIEVEEVENLOADDISTRIBUTION,THEMINIMANIPULATORISMADECOMPLETELYSYMMETRICTHEEQUIVALENTLIMBCONFIGURATIONWILLBEUSEDFORANALYSIS,BECAUSETHESPHERICALANDREVOLUTELIMBISEASIERTOANALYZETHANTHEUNIVERSALANDUNIVERSALLIMBTHELOWERENDSOFTHELIMBSARECONNECTEDTOTWODOFDRIVERSTHEUPPERENDOFTHELIMBSARECONNECTEDTOTHEPLATFORMTHROUGHREVOLUTEJOINTSNOTETHATTHEJOINTAXESATPOINTSAREPARALLELTOLINESLETUSDEFINETHEFIXEDBASEREFERENCEFRAMEANDTHEMOVINGPLATFORMREFERENCEFRAMEINDETAILTHEORIGINOFTHEBASEREFERENCEFRAMEISPLACEDATTHECENTROIDOFTRIANGLEDIDZD3THEPOSITIVEXAXISISPARALLELTOANDPOINTSINTHEDIRECTIONOFVECTORDZD3THEPOSITIVEYAXISPOINTSFROMPOINT0TOPOINTDLTHEZAXISISDEFINEDBYTHERIGHTHANDRULESIMILARLY,THEORIGINOFTHEPLATFORMREFERENCEFRAMEISPLACEDATTHECENTROIDOFTRIANGLEP1PZP3THEPOSITIVEUAXISISPARALLELTOANDPOINTSINTHEDIRECTIONOFVECTORPZP3THEPOSITIVEVAXISPOINTSFROMPOINT0TOPOINTP1THEWAXISISDEFINEDBYTHERIGHTHANDRULETOKEEPTHEMINIMANIPULATORSYMMETRIC,BOTHTRIANGLESD1DZD3ANDP1PZP3AREMADEEQUILATERALINTHISPAPER,CLOSEDFORMSOLUTIONFORDIRECTKINEMATICSOFANEWTHREELIMBEDSIXDEGREEOFFREEDOMMINIMANIPULATORISPRESENTEDITISSHOWNTHATTHEFORDIRECTKINEMATICSOFTHEMINIMANIPULATORISSIXTEENTOMAXIMUMNUMBEROFSOLUTIONSOBTAINTHESESOLUTIONS,ONLYANEIGHTHDEGREEPOLYNOMIALINTHESQUAREOFASINGLEVARIABLEHASTOBESOLVEDITISALSOPROVEDTHATTHESIXTEENSOLUTIONSAREEIGHTPAIRSOFREFLECTEDCONFIGURATIONSWITHRESPECTTOTHEPLANEPASSINGTHROUGHTHELOWERENDSOFTHETHREELIMBSTHERESULTSOFANUMERICALEXAMPLEAREVERIFIEDBYANINVERSEKINEMATICSANALYSISTHISRESEARCHWASSUPPORTEDINPARTBYTHENSFENGINEERINGRESEARCHCENTERPROGRAM,NSFDCDR8803012THEFIRSTAUTHORGRATEFULLYACKNOWLEDGESTHESUPPORTOFNASA/GODDARDSPACEFLIGHTCENTERSUCHSUPPORTSDONOTCONSTITUTEENDORSEMENTSOFTHEVIEWSEXPRESSEDINTHEPAPERBYTHESUPPORTINGAGENCIESWORKSPACEANALYSISANDOPTIMALDESIGNOFA3LEG6DOFPARALLELPLATFORMMECHANISMANEWCLASSOFSIXDEGREEOFFREEDOMDOFSSPATIALPARALLELPLATFORMMECHANISMISCONSIDEREDINTHISPAPERTHEARCHITECTURECONSISTSOFAMOBILEPLATFORMCONNECTEDTOTHEBASEBYTHREEIDENTICALKINEMATICCHAINSUSINGFIVEBARLINKAGESRECENTINVESTIGATIONSSHOWEDTHATPARALLELMECHANISMSWITHSUCHATOPOLOGYFORTHELEGSCANBEEFFICIENTLYSTATICALLYBALANCEDUSINGONLYLIGHTELASTICELEMENTSTHISPAPERFOLLOWSUPWITHAWORKSPACEANALYSISANDOPTIMIZATIONOFTHEDESIGNOFTHATPARALLELMECHANISMMORESPECIFICALLY,CONSIDERINGAPOSSIBLEINDUSTRIALAPPLICATIONOFTHEARCHITECTUREASAPOSITIONINGANDORIENTINGDEVICEOFHEAVYLOADS,ANOPTIMIZATIONPROCEDUREFORTHEMAXIMIZATIONOFTHEVOLUMEOFTHETHREEDIMENSIONAL3DCONSTANTORIENTATIONWORKSPACEOFTHEMECHANISMISFIRSTPRESENTEDASTHEMECHANISMCOULDALSOHAVEGREATPOTENTIALASAMOTIONBASEFORFLIGHTSIMULATORS,WEDEVELOPHEREADISCRETIZATIONMETHODFORTHECOMPUTATIONANDGRAPHICALREPRESENTATIONOFANEWWORKSPACEWITHCOUPLEDTRANSLATIONALANDROTATIONALDOFSTHISWORKSPACECANBEDEFINEDASTHE3DSPACEWHICHCANBEOBTAINEDWHENGENERALIZEDCOORDINATESX,YANDTORSIONANGLEΨINTHETILTANDTORSIONANGLESPARAMETRIZATIONARECONSTANTASECONDPROCEDUREISTHENPRESENTEDFORTHEMAXIMIZATIONOFTHEVOLUMEOFTHISSECONDSUBSETOFTHECOMPLETEWORKSPACEFORBOTHAPPROACHES,OURPURPOSEISTOATTEMPTANOPTIMALDESIGNOFTHEMECHANISMBYMAXIMIZINGTHEVOLUMEOFTHEASSOCIATED3DCARTESIANREGIONTHATISFREEOFCRITICALSINGULARITYLOCIDETERMINATIONOFTHEWRENCHCLOSUREWORKSPACEOF6DOFPARALLELCABLEDRIVENMECHANISMSAPARALLELCABLEDRIVENMECHANISMCONSISTSESSENTIALLYOFAMOBILEPLATFORMCONNECTEDINPARALLELTOABASEBYLIGHTWEIGHTLINKSSUCHASCABLESTHECONTROLOFLENGTHOFTHECABLESALLOWSTHECONTROLOFTHEPOSEOFTHEPLATFORMFORINSTANCE,AMECHANISMDRIVENBYEIGHTCABLESISSHOWNINFIG1PARALLELCABLEDRIVENMECHANISMSHAVESEVERALADVANTAGESOVERCONVENTIONALRIGIDLINKMECHANISMSBARRETTEANDGOSSELIN,2005,MERLET,2004,ROBERTSETAL,1998THEMASSANDINERTIAOFTHEMOVINGPARTISREDUCEDANDTHEYARELESSEXPENSIVEMOREOVER,PARALLELCABLEDRIVENMECHANISMSAREEASIERTOBUILD,TRANSPORTANDRECONFIGUREANDTHEYHAVETHEPOSSIBILITYOFWORKINGINAVERYLARGESPACECONSEQUENTLY,PARALLELCABLEDRIVENMECHANISMSHAVEBEENUSEDINSEVERALAPPLICATIONSSUCHAS,FORINSTANCE,ROBOTICCRANESDAGALAKISETAL,1989,HIGHSPEEDMANIPULATIONKAWAMURAETAL,2000,ACTIVESUSPENSIONDEVICESLAFOURCADE,2004ANDVIRTUALREALITYMERLET,2004THISPAPERDEALSWITHTHEDETERMINATIONOFTHEWORKSPACEOFSIXDOFPARALLELCABLEDRIVENMECHANISMSTHISWORKSPACEMAYBELIMITEDBYTHETOTALLENGTHOFEACHCABLE,BYTHEINTERFERENCESBETWEENTHECABLESANDBETWEENTHECABLESANDTHEMOBILEPLATFORMANDBYTHEUNIDIRECTIONALNATUREOFTHEFORCESAPPLIEDBYTHECABLESONTHEMOBILEPLATFORMTHELIMITATIONSDUETOTHETOTALLENGTHSOFTHECABLESCANBEDETERMINEDBYMEANSOFALGORITHMSPRESENTEDINGOSSELIN,1990ANDINMERLET,1999HOWEVER,THEWORKSPACEWILLUSUALLYNOTBELIMITEDBYTHETOTALLENGTHSOFTHECABLESSINCELARGETOTALLENGTHSCANGENERALLYBEUSEDFORACONSTANTORIENTATIONOFTHEMOBILEPLATFORM,THEPROBLEMOFTHEINFLUENCEONTHEWORKSPACEOFTHECABLESINTERFERENCESISADDRESSEDINMERLET,2004THETHIRDLIMITATIONWHICHISDUETOTHEUNIDIRECTIONALNATUREOFTHEFORCESAPPLIEDBYTHECABLESONTHEPLATFORMHASBEENSTUDIEDMAINLYINTHECASEOFPLANARPARALLELCABLEDRIVENMECHANISMSINBARRETTEANDGOSSELIN,2005,FATTAHANDAGRAWAL,2005,GALLINAANDROSATI,2002,GOUTTEFADEGOSSELIN,2006,ROBERTSETAL,1998,STUMPANDKUMAR,2004,VERHOEVENANDHILLER,2000,VERHOEVEN,2004,WILLIAMSETAL,2003中文翻译新的封闭式并联迷你机器人的直接运动学正解近年来,许多研究人员已经对并联式迷你机器人表现出了极大的兴趣。这种结构在精度、刚度、载荷重量比和载荷分布方面比那些所占空间更大的更适合。著名的斯图尔特平台(斯图尔特,1965)可能是第一个已经记录在文献中的六自由度(六度)并联机构。它是由六个独立的肢体将一个移动平台和一个地基连接而成。许多研究者认为斯图尔特平台可以当作一个机器人机械臂(例如,菲克特麦克道威尔,1980年,亨特,1983年,杨振宁与李政道,1984年,菲克特,1986)。其他类型的六自由度并联机构已在文献中被引入和研究(例如,KOHLI等人,1988;哈金斯和特萨,1988;蔡和塔玛塞比,1991A)。沃尔德伦和狩猎(1987)表明,并联机构的运动学行为有许多逆特性,串行机制。例如,并联机构的直接运动学比它的逆运动学困难得多,而对于串行机械臂,事实正好相反。迪厄多内等人。(1972)应用牛顿拉夫逊方法解决同一个的运动模拟器的斯图尔特平台运动学正解。后(1988)采用了类似的技术来对一个类似斯图尔特平台的并联机构进行直接运动学数值求解。格里菲斯和DUFFY(1989)以及NANUA等人(1990)研究了斯图尔特平台的特殊情况下,在其中对球形接头的基极和平台的平台或同心的正运动学。他们能够减少在一个单变量的平方第八度多项式(共十六度)的问题。然而,由格里菲斯和杜菲所提到的(1989),同心球节点对很可能存在设计问题。林等人(1990)解决了另一类的斯图尔特平台直接运动学问题,其中有两个同心球节点的基础上,和两个同心球节点平台。后一种斯图尔特平台受对称和同心球接

注意事项

本文(外文翻译--新的封闭式并联迷你机器人的直接运动学正解.doc)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(发送邮件至[email protected]或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5