欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--桥梁使用系统可靠性评估 英文版.pdf

    • 资源ID:97348       资源大小:874.90KB        全文页数:9页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--桥梁使用系统可靠性评估 英文版.pdf

    BridgeRatingUsingSystemReliabilityAssessment.II:ImprovementstoBridgeRatingPracticesNaiyuWang,M.ASCE1;BruceR.Ellingwood,Dist.M.ASCE2;andAbdul-HamidZureick,M.ASCE3Abstract:Thecurrentbridge-ratingprocessdescribedinAASHTOManualforBridgeEvaluation,FirstEditionpermitsratingstobedeterminedbyallowablestress,loadfactor,orloadandresistancefactormethods.Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostinglimitsforthesamebridge,asituationthathasseriousimplicationswithregardtopublicsafetyandtheeconomicwell-beingofcommunitiesthatmaybeaffectedbybridgepostingsorclosures.Thispaperisthesecondoftwopapersthatsummarizearesearchprogramtodevelopimprovementstothebridge-ratingprocessbyusingstructuralreliabilitymethods.Thefirstpaperprovidedbackgroundontheresearchprogramandsummarizedacoordinatedprogramofloadtestingandanalysistosupportthereliabilityassessmentleadingtotherecommendedimprovements.Thissecondpaperpresentsthereliabilitybasisfortherecommendedloadrating,developsmethodsthatcloselycoupletheratingprocesstotheresultsofinsituinspectionandevaluation,andrecommendsspecificimprovementstocurrentbridge-ratingmethodsinaformatthatisconsistentwiththeloadandresistancefactorrating(LRFR)optionintheAASHTOManualforBridgeEvalu-ation.DOI:10.1061/(ASCE)BE.1943-5592.0000171.©2011AmericanSocietyofCivilEngineers.CEDatabasesubjectheadings:Concretebridges;Reinforcedconcrete;Prestressedconcrete;Loadfactors;Reliability;Steel;Ratings.Authorkeywords:Bridges(rating);Concrete(reinforced);Concrete(prestressed);Conditionassessment;Loads(forces);Reliability;Steel;structuralengineering.IntroductionTheAASHTOManualforBridgeEvaluation(MBE),FirstEdition(AASHTO2008)allowsbridgeratingstobedeterminedthroughthetraditionalallowablestressrating(ASR)orloadfactorrating(LFR)methodsorbythemorerecentloadandresistancefactorrating(LRFR)method,whichisconsistentwiththeAASHTOLRFDBridgeDesignSpecifications(2007).Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostedlimitsforthesamebridge(NCHRP2001;Wangetal.2009),asituationthatcannotbejustifiedfromaprofessionalengineeringviewpointandhasimplicationsforthesafetyandeconomicwell-beingofthoseaffectedbybridgepostingsorclosures.Toaddressthisissue,theGeorgiaInstituteofTechnologyhasconductedamultiyearresearchprogramaimedatmakingimprovementstotheprocessbywhichtheconditionofexistingbridgestructuresinGeorgiaareassessed.Theendproductofthisresearchprogramissetofrecommendedguidelinesfortheevaluationofexistingbridges(Ellingwoodetal.2009).Theseguidelinesareestablishedbyaco-ordinatedprogramofloadtestingandadvancedfinite-elementmodeling,whichhavebeenintegratedwithinastructuralreliabilityframeworktodeterminepracticalbridge-ratingmethodsthatareconsistentwiththoseusedtodeveloptheAASHTOLRFDBridgeDesignSpecifications(AASHTO2007).Itisbelievedthatbridgeconstructionandratingpracticesaresimilarenoughinothernon-seismicareastomaketheinferences,conclusions,andrecommen-dationsvalidforlargeregionsinthecentralandeasternUnitedStates(CEUS).TherecentimplementationofLRFDanditscompanionratingmethod,LRFR,bothofwhichhavebeensupportedbystructuralreliabilitymethods,enablebridgedesignandconditionassessmenttobeplacedonamorerationalbasis.Notwithstandingthesead-vances,improvedtechniquesforevaluatingthebridgeinitsinsituconditionwouldminimizethelikelihoodofunnecessaryposting.Forexample,materialstrengthsinsitumaybevastlydifferentfromthestandardizedornominalvaluesassumedindesignandcurrentratingpracticesattributabletostrengthgainofconcreteononehandanddeteriorationattributabletoaggressiveattackfromphysi-calorchemicalmechanismsontheother.Satisfactoryperformanceofawell-maintainedbridgeoveraperiodofyearsofservicepro-videsadditionalinformationnotavailableatthedesignstagethatmightbetakenintoaccountinmakingdecisionsregardingpostingorupgrading.Investigatingbridgesystemreliabilityratherthansolelyrelyingoncomponent-basedratingmethodsmayalsobeofsignificantbenefit.Properconsiderationofthesefactorsislikelytocontributetoamorerealisticcapacityratingofexistingbridges.ThispaperisthesecondoftwocompanionpapersthatprovidethetechnicalbasesforproposedimprovementstothecurrentLRFRpractice.Thefirstpaper(Wangetal.2011)summarizedthecurrentbridge-ratingprocessandpracticesintheUnitedStates,andpresentedtheresultsofacoordinatedbridgetestingandanalysisprogramconductedtosupportrevisionstothecurrentratingpro-cedures.ThispaperdescribesthereliabilityanalysisframeworkthatprovidesthebasisforrecommendedimprovementstotheMBEandrecommendsspecificimprovementstotheMBEthataddresstheprecedingfactors.1SeniorStructuralEngineer,Simpson,Gumpertz,andHeger,Inc.,41SeyonSt.,Waltham,MA02453;formerly,GraduateResearchAssistant,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology.2Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA30332-0355(correspondingauthor).E-mail:ellingwoodgatech.edu3Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA30332-0355.Note.ThismanuscriptwassubmittedonMarch19,2010;approvedonAugust2,2010;publishedonlineonOctober14,2011.DiscussionperiodopenuntilApril1,2012;separatediscussionsmustbesubmittedforindi-vidualpapers.ThispaperispartoftheJournalofBridgeEngineering,Vol.16,No.6,November1,2011.©ASCE,ISSN1084-0702/2011/6-863871/$25.00.JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011/863Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp:/www.ascelibrary.orgReliabilityBasesforBridgeLoadRatingBridgedesign,ascodifiedintheAASHTO-LRFDspecifications(2007),isestablishedbymodernprinciplesofstructuralreliabilityanalysis.Theprocessbywhichexistingbridgesareratedmustbeconsistentwiththoseprinciples.Uncertaintiesintheperfor-manceofanexistingbridgearisefromvariationsinloads,materialstrengthproperties,dimensions,naturalandartificialhazards,insufficientknowledge,andhumanerrorsindesignandconstruc-tion(Ellingwoodetal.1982;Galambosetal.1982;Nowak1999).Probability-basedlimitstatesdesign/evaluationconceptsprovidearationalandpowerfultheoreticalbasisforhandlingtheseuncertain-tiesinbridgeevaluation.ThelimitstatesforbridgedesignandevaluationcanbedefinedinthegeneralformGðXÞ¼0ð1ÞwhereX¼ðX1;X2;X3;XnÞ=loadandresistancerandomvariables.Onthebasisofbridgeperformanceobjectives,theselimitstatesmayrelatetostrength(forpublicsafety)ortoexcessivedeformation,cracking,wearofthetrafficsurface,orothersourcesoffunctionalimpairment.Astateofunsatisfactoryperformanceisdefined,byconvention,whenGðXÞ<0.Thus,theprobabilityoffailurecanbeestimatedasPf¼P½GðXÞ<0C138¼ZfXðxÞdxð2ÞwherefXðxÞ=jointdensityfunctionofX;and=failuredomaininwhichGðxÞ<0.Inmodernfirst-order(FO)reliabilityanalysis(Melchers1999),Eq.(2)isoftenapproximatedbyPf¼ðC0Þð3ÞwhereðÞ=standardnormaldistributionfunction;and=reliabilityindex.Forwell-behavedlimitstates,Eq.(3)usuallyisanexcellentapproximationtoEq.(2),andandPfcanbeusedinterchangeablyasreliabilitymeasures(Ellingwood2000).WhenthefailuresurfaceinEq.(1)iscomplexorwhenthereliabilityofastructuralsystem,inwhichthestructuralbehaviorismodeledthroughfinite-elementanalysis,isofinterest,Eq.(2)canbeevalu-atedefficientlybyMonteCarlo(MC)simulation.TheAASHTOLRFDBridgeDesignSpecifications(2007)areestablishedonFOreliabilityanalysis,appliedtoindividualgirders(Nowak1999;KimandNowak1997;TabshandNowak1991).Withthesupportingprobabilisticmodelingofresistanceandloadterms(Nowak1993;BartlettandMcGregor1996;MosesandVerma1987),anexaminationofexistingbridgedesignpracticesledtoatargetreliabilityindex,equalto3.5basedona75-yearserviceperiod(Nowak1999,Moses2001).Consistentwithsuchreliability-basedperformanceobjective,theAASHTO-LRFDspec-ificationsstipulatethatinthedesignofnewbridges1:25Dþ1:5DAþ1:75ðLþIÞ<Rnð4ÞwhereD=deadloadexcludingweightofthewearingsurface;DA=weightofthewearingsurface(asphalt);(LþI)representsliveloadincludingimpact;Rn=designstrength,inwhichRn=nominalresistance;and=resistancefactorwhichdependsontheparticu-larlimitstateofinterest.Thisequationisfamiliartomostdesigners.Whenthereliabilityofanexistingbridgeisconsidered,allow-anceshouldbemadeforthespecificknowledgeregardingitsstruc-turaldetailsandpastperformance.Fieldinspectiondata,loadtesting,materialtests,ortrafficsurveys,ifavailable,canbeutilizedtomodifytheprobabilitydistributionsdescribingthestructuralbehaviorandresponseinEq.(2).Themetricforacceptableperfor-manceisobtainedbymodifyingEq.(2)toreflecttheadditionalinformationgatheredPf¼P½GðXÞ<0jHC138<PTð5ÞwhereHrepresentswhatislearnedfromprevioussuccessfulperformance,in-serviceinspection,andsupportinginsitutesting,ifany.Thetargetprobability,PT,shoulddependontheeconomicsofrehabilitation/repair,consequencesoffutureoutages,andthebridgeratingsought.IntheAASHTO-LRFRmethod(2007),thetargetfordesignlevelcheckingbyusingHL-93loadmodel(atinventorylevel)is3.5,whichiscomparabletothereliabilityfornewbridges,whereasthetargetforHL-93operatinglevelandforlegal,andpermitloadsisreducedto2.5owingtothereducedloadmodelandreducedexposureperiod(5years)(Moses2001).ThepresenceofHinEq.(5)isaconceptualdeparturefromEqs.(2)and(3),whichprovidethebasisforLRFD.Forexample,trafficdemandsonbridgeslocatedindifferentplacesinthehigh-waysystemmaybedifferent.Totakethissituationintoaccount,LRFRintroducesasetoflive-loadfactorsforthelegalloadrating,whichdependontheinsitutrafficdescribedbytheaveragedailytrucktraffic(ADTT).Furthermore,thecomponentnominalresis-tanceinLRFRisfactoredbyasystemfactorsandamemberconditionfactorcinadditiontothebasicresistancefactorforaparticularcomponentlimitstate.Thesystemfactordependsontheperceivedredundancylevelofagivenbridgeinitsrating,whereastheconditionfactoristoaccountforthebridgessite-specificdeteriorationcondition,andpurportstoincludetheaddi-tionaluncertaintybecauseofanydeteriorationthatmaybepresent.ThebasisfortheLRFRtabulatedvaluesforcwillbefurtherexaminedlaterinthispaper.TheLRFRoptionintheAASHTOMBEextendsthelimitstatedesignphilosophytothebridgeevaluationprocessinanattempttoachieveauniformtargetlevelofsafetyforexistinghighwaybridgesystems.However,theuncertaintymodelsofloadandresistanceembeddedintheLRFRratingformatrepresenttypicalvaluesforalargepopulationofbridgesinvolvingdifferentmaterials,con-structionpractices,andsite-specifictrafficconditions.AlthoughtheLRFRlive-loadmodelhasbeenmodifiedforsomeofthespe-cificcasesasdiscussedpreviously,thebridgeresistancemodelshouldalsobe“customized”foranindividualbridgebyincorpo-ratingavailablesite-specificknowledgetoreflectthefactthateachbridgeisuniqueinitsas-builtcondition.Aratingprocedurethatdoesnotincorporateinsitudataproperlymayresultininaccurateratings(andconsequentunnecessaryrehabilitationorpostingcosts)forotherwisewell-maintainedbridges,asindicatedbymanyloadtests(NowakandTharmabala1988;BakhtandJaeger1990;Mosesetal.1994;FuandTang1995;Faberetal.2000;Barker2001;Bhattacharyaetal.2005).Improvementsinpracticalguidancewouldpermitthebridgeengineertoincludemoresite-specificknowledgeinthebridge-ratingprocesstoachieverealisticevalu-ationsofthebridgeperformance.Thisguidancemusthaveastruc-turalreliabilitybasis.ImprovementsinBridgeRatingbyUsingReliability-BasedMethodsInthissection,thebridgeratingsinlightofthereliability-basedupdatingofin-servicestrengthdescribedintheprevioussectionareexamined.Thepossibilitiesofincorporatingavailablesite-specificdataobtainedfrommaterialtests,loadtests,advanced864/JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp:/www.ascelibrary.orgstructuralanalysis,andsuccessfulserviceperformancetomakefur-therrecommendationsforimprovingratinganalysisareexplored.IncorporationofInSituMaterialTestingThecompanionpapersummarizedtheloadtestofBridgeID129-0045,areinforcedconcreteT-beambridgethatwasdesignedaccordingtotheAASHTO1953designspecificationforH-15loadingandwasconstructedin1957.Thespecified28-daycom-pressionstrengthoftheconcretewas17.2MPa(2,500psi),whereastheyieldstrengthofthereinforcementwas276MPa(40ksi).Thescheduleddemolitionofthisbridgeprovidedanop-portunitytosecuredrilledcorestodeterminethestatisticalproper-tiesoftheinsitustrengthofthe51-yearoldconcreteinthebridge.Four-inchdiameterdrilledcoresweretakenfromtheslabofthebridgebeforeitsdemolition.Sevencoresweretakenfromtheslabatsevendifferentlocationsalongboththelengthandwidthofthebridge.Coresalsoweretakenfromthreeofthegirdersthatwereingoodconditionafterdemolition;thesewerecutinto203mm(8-in.)lengthsandthejaggedendsweresmoothedandcapped,resultinginatotalof14girdertestcylinders.Testsofthese102×203mm(4×8in.)cylindersconformedtoASTMStandardC42(ASTM1995)andtheresultsarepresentedinTable1.Ananalysisofthesedataindicatednostatisticallysignificantdifferenceintheconcretecompressionstrengthinthegirdersandslab,andthedatawerethereforecombinedforfurtheranalysis.Themean(average)com-pressionstrengthoftheconcreteis33MPa(4,820psi)andthecoefficientofvariation(COV)is12%,whichisrepresentativeofgood-qualityconcrete(BartlettandMacGregor1996).Themeanstrengthis1.93timesthespecifiedcompressionstrengthofthecon-crete.Thisincreaseincompressionstrengthoveraperiodofmorethan50yearsistypicaloftheincreasesfoundforgood-qualitycon-cretebyotherinvestigators(WashaandWendt1975).Iftheseresultsaretypicalofwell-maintainedolderconcretebridges,theinsituconcretestrengthislikelytobesubstantiallygreaterthanthe28-daystrengththatiscustomarilyspecifiedforbridgedesignorconditionevaluation.Accordingly,thebridgeen-gineershouldbeprovidedincentivesintheratingcriteriatorateabridgebyusingthebestpossibleinformationfrominsitumaterialstrengthtestingwheneverfeasible(Ellingwoodetal.2009).Itiscustomarytobasethespecifiedcompressionstrengthofconcreteonthe10thpercentileofanormaldistributionofcylinderstrengths(Standard318-05;ACI2005).Asuitableestimateforthis10thper-centilebasedonasmallsampleofdataisprovidedbyfc¼C22Xð1C0kVÞð6ÞwhereC22X=samplemean;V=samplecoefficientofvariation;andk¼p%lowerconfidenceintervalonthe10thpercentilecompres-sionstrength.Byusingthe21testsfromBridgeID129-0045withp%¼75%asanexample,k=1.520(Montgomery1996)andfccanbeexpressedasfc¼ð11:520×0:12Þ×4;820¼3;941psi(27.17MPa),avaluethatis58%higherthanthe17.2MPa(2,500psi)thatotherwisewouldbeusedintheratingcalculations.IntheFEmodelingofthisbridgethatprecededthesestrengthtests,theconcretecompressionstrengthwassetat17.2MPa(2,500psi),whichwastheonlyinformationavailablebeforethematerialtest.Todeterminetheimpactofusingtheactualconcretestrengthinanolderbridgeontheratingprocess,thefinite-elementmodelwasrevisedtoaccountfortheincreasedconcretecompres-sionstrength(andthecorrespondingincreaseinstiffness)intotheanalysisofthebridge.Onlyamodestenhancementintheestimatedbridgecapacityinflexurewasobtained,buta34%increasewasachievedintheshearcapacityratingsforthegirdersbyusingtheresultsofTable1.BridgeSystemReliabilityAssessmentontheBasisofStaticPush-DownAnalysisAlthoughcomponent-baseddesignofanewbridgeprovidesad-equatesafetyatreasonablecost,component-basedevaluationofanexistingbridgeforratingpurposesmaybeoverlyconservativeandresultinunnecessaryrepairorpostingcosts.Itispreferabletoperformloadratingregardingbridgepostingorroadclosurethroughasystem-levelanalysis.Aproperlyconductedproofloadtestcanbeaneffectivewaytolearnthebridgesstructuralperfor-manceasasystemandtoupdatethebridgeloadcapacityassess-mentinsituationsinwhichtheanalyticalapproachproduceslowratings,orstructuralanalysisisdifficulttoperformbecauseofdeteriorationorlackofdocumentation(SarafandNowak1998).However,aproofloadtestrepresentsasignificantinvestmentincapital,time,andpersonnel,andthetrade-offbetweentheinforma-tiongainandtheriskofdamagingthebridgeduringthetestmustbeconsidered.ProoftestsarerarelyconductedbythestateDOTs(Wangetal.2009)forratingpurposes.Oneofthekeyconclusionsfromthecompanionpaper(Wangetal.2011),inwhichbridgeresponsemeasurementsobtainedfromtheloadtestsofthefourbridgeswerecomparedwiththeresultsoffinite-elementanalysesofthosebridgeswithABAQUS(2006),wasthatthefinite-elementmodelingprocedurewassufficientforconductingvirtualloadtestsofsimilarbridges.Thesevirtualloadtestscanprovidethebasisfordevelopingrecommendationsforimprovingguidelinesforbridgeratingsbyusingstructuralreli-abilityprinciples.Asnotedintheintroductorysection,suchguide-linesrequirethebridgetobemodeledasastructuralsystemtoproperlyidentifytheperformancelimitstatesonwhichsuchguide-linesaretobebased.Toidentifysuchperformancelimitstatesandtogainarealisticappraisaloftheconservatisminherentincurrentbridgedesignandconditionratingprocedures,aseriesofstaticpush-downanalysesofthefourbridgeswasperformed.Theseanalysesareaimedatdeterminingtheactualstructuralbehavioroftypicalbridgeswhenloadedwellbeyondtheirdesignlimit;asasidelight,theyprovideadditionalinformationtosupportrationalevaluationofpermitloadapplications(section6A.4.5intheManualofBridgeEvaluation).Inapush-downanalysis,tworatingvehiclesareplacedside-by-sideonthebridgeinapositionthatmaximizestheresponsequan-tityofinterestintheevaluation(e.g.,maximummoment,shear,anddeflection).Theloadsarethenscaledupwardstaticallyandtheper-formanceofthebridgesystemismonitored.Thedeadweightofthebridgestructureisincludedintheanalysis.Theresponseisinitiallyelastic.Asthestaticloadincreases,however,elementsofthebridgestructurebegintoyield,crack,orbuckle,andthegeneralizedload-deflectionbehaviorbecomesnonlinear.Ifthebridgestructureisredundantandthestructuralelementbehaviorsareductile,substan-tialloadredistributionmayoccur.Atsomepoint,however,asmallincrementinstaticloadleadstoalargeincrementindisplacement.Atthatpoint,thebridgehasreacheditspracticalload-carryinglimit,andisatastateofincipientcollapse.Table1.CompressionTestsof4×8in:CoresDrilledfromRCConcreteBridge(ID129-0045)SourceNumberAverage(psi)Standarddeviation(psi)CoefficientofvariationGirder144,8806030.12Slab74,6985730.12Overall214,8205860.12Note:1psi¼6:9Pa.JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011/865Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp:/www.ascelibrary.orgThestaticpush-downanalysisisillustratedinFig.1fortheRCT-beambridge(ID129-0045).TheFEmodelingwasperformedwithABAQUS(2006),withrandommaterialpropertiesdeterminedbytheirrespectivemeanvalues.Thepointofinitialyieldingoccursatapproximately4.31timestheHS20-44designloadconfigura-tion,atadeflectionofapproximately36mm(1.4in.),whichisequaltoapproximately1=345timesthespan.Theultimatelive-loadcapacityofthebridgeisapproximately4.8timestheappliedHS20-44loads.FromFig.1,this52-year-oldbridgeshowsacon-siderabledegreeofductilityinbehavior.ThelevelofloadimposedbythefourfullyloadedtrucksduringtheloadtestdescribedinthecompanionpaperisalsoshowninFig.1;thetestload(inmaximumgirdermoment)wasapproximately1.3timesthetwoside-by-sideHS20-44loads.Thecapacityofthisbridgesystemissubstantiallyinexcessofwhatagirder-basedcalculationwouldindicate.Similarpush-downanalyseswereperformedontheotherbridgesdescribedinthecompanionpaper,yieldingtheresultssummarizedinTable2.Theelasticrangesofallfourbridgesareinexcessof4timesthedesignloadlevel,indicatingthelevelofconservatismassociatedwithtraditionaldesignandratingprocedures.AspartoftheefforttodeveloptheAASHTOLRFDBridgeDesignSpecifications,extensivedatabasesweredevelopedtodescribethestrengthofindividualbridgegirdersandvehicleliveloadsprobabilistically(Nowak1999;Moses2001).(TheHL-93live-loadmodelisanoutgrowthofthispreviousresearch.)Thatresearchfocusedonthecapacityofindividualbridgegirders;sys-temeffectswereincludedindirectlyandapproximatelythroughnewgirderdistributionfactorsthatweredevelopedinthecourseoftheproject.Thecapacityofabridgestructuralsystemislikelytobedifferentfromthecapacitypredictedfromananalysisofindi-vidualgirders.Todeterminetheadditionallevelofconservatism(ifany)thatarisesfromsystembehavior,afinite-element-basedsystemreliabilityanalysisofallfourstudybridgeswasconducted.Thissystemreliabilityanalysisprovidesadditionalperspectiveonthe(unknown)levelofconservatismfurnishedbythecurrentgenerationofreliability-basedconditionevaluationandratingpro-ceduresembodiedintheAASHTOManualforBridgeEvaluation,andhasimplicationsfortheuseofsuchmethodsinpermitratingsforextremevehicleloads.ToacceleratetheFE-basedreliabilityanalysis,efficientFEmodelsofthesamplebridgesweredevelopedwiththeopen-sourceplatform,OpenSeesVersion2.2.2.ThemoredetailedABAQUSmodels,whichhadbeenvalidatedfromtheload-testresults,wereemployedtoconfirmthebridgestructuralbehaviorpredictedbytheOpenSeesmodelsasthesystemwasloadedbeyonditsdesignlimit.ByusingtheRCT-beambridgeagainasanexample,Fig.1illus-tratestheconsistencyachievedbetweentheABAQUS(2006)andtheOpenSeesmodelsthroughacompletepush-downanalysis,inwhichthebridgeisloadedwellintotheinelasticrange.Followingthisvalidation,thesystemperformanceofthesamplebridgeswascharacterizedstatisticallybypropagatingtheuncertaintiesinmaterialstrengths,stiffnesses,andgeometrythroughtheOpenSeesanalysisbyusingaLatinHypercubeSamplingtechnique(ImamandConover1980)toachieveefficientcoverageofthesamplespacewitharelativelyfewFEanalyses.TherandomvariablesinvolvedintheseFEanalysestocapturebridgestructuralperfor-mancearedescribedwithstatisticsdefinedintheLRFDdatabasesmentionedpreviously.Thelimitstateofperformancewasassumedasthepointatwhichthebridgesystemexitstheelasticrange,asidentifiedfromitsload-deflectioncurve(seeFig.1).Theflexuralcapacitiessodeterminedfromthissystemreliabil-ityanalysiswererank-orderedandplottedonlognormalprobabilitypaper,asillustratedinFig.2forthestraightapproachRCbridge(ID129-0045).Thelognormaldistributionprovidesagoodfittothesedata.Themeanandcoefficientofvariationinthesystemcapacityofthisbridge(atfirstyield)are4.31timestheappliedFig.1.Push-downanalysisofRCT-beambridgeID129-0045(1in¼25:4mm)Table2.AnalysisofBridgeCapacityDeterminedasthePointofFirstYieldBridgeIDCountyTypeDesignloadLoadfactorondesignloadLoadfactoronHS-20129-0045-0GordonRC;Tstraight;notpostedH-157.464.31015-0108-0BartowRC;Tskewed;postedHS-156.004.50223-0034-0PauldingPrestressed;straight;notpostedHS-205.945.94085-0018-0DawsonSteelgirder;straight;postedH-159.935.37Fig.2.LognormalfitofthebridgesystemresistanceoftheRCBridge(ID129-0045)866/JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp:/www.ascelibrary.org

    注意事项

    本文(外文翻译--桥梁使用系统可靠性评估 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!