会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--桥梁使用系统可靠性评估 英文版.pdf

  • 资源星级:
  • 资源大小:874.90KB   全文页数:9页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--桥梁使用系统可靠性评估 英文版.pdf

BridgeRatingUsingSystemReliabilityAssessment.IIImprovementstoBridgeRatingPracticesNaiyuWang,M.ASCE1BruceR.Ellingwood,Dist.M.ASCE2andAbdulHamidZureick,M.ASCE3AbstractThecurrentbridgeratingprocessdescribedinAASHTOManualforBridgeEvaluation,FirstEditionpermitsratingstobedeterminedbyallowablestress,loadfactor,orloadandresistancefactormethods.Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostinglimitsforthesamebridge,asituationthathasseriousimplicationswithregardtopublicsafetyandtheeconomicwellbeingofcommunitiesthatmaybeaffectedbybridgepostingsorclosures.Thispaperisthesecondoftwopapersthatsummarizearesearchprogramtodevelopimprovementstothebridgeratingprocessbyusingstructuralreliabilitymethods.Thefirstpaperprovidedbackgroundontheresearchprogramandsummarizedacoordinatedprogramofloadtestingandanalysistosupportthereliabilityassessmentleadingtotherecommendedimprovements.Thissecondpaperpresentsthereliabilitybasisfortherecommendedloadrating,developsmethodsthatcloselycoupletheratingprocesstotheresultsofinsituinspectionandevaluation,andrecommendsspecificimprovementstocurrentbridgeratingmethodsinaformatthatisconsistentwiththeloadandresistancefactorratingLRFRoptionintheAASHTOManualforBridgeEvaluation.DOI10.1061/ASCEBE.19435592.0000171.©2011AmericanSocietyofCivilEngineers.CEDatabasesubjectheadingsConcretebridgesReinforcedconcretePrestressedconcreteLoadfactorsReliabilitySteelRatings.AuthorkeywordsBridgesratingConcretereinforcedConcreteprestressedConditionassessmentLoadsforcesReliabilitySteelstructuralengineering.IntroductionTheAASHTOManualforBridgeEvaluationMBE,FirstEditionAASHTO2008allowsbridgeratingstobedeterminedthroughthetraditionalallowablestressratingASRorloadfactorratingLFRmethodsorbythemorerecentloadandresistancefactorratingLRFRmethod,whichisconsistentwiththeAASHTOLRFDBridgeDesignSpecifications2007.ThesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostedlimitsforthesamebridgeNCHRP2001Wangetal.2009,asituationthatcannotbejustifiedfromaprofessionalengineeringviewpointandhasimplicationsforthesafetyandeconomicwellbeingofthoseaffectedbybridgepostingsorclosures.Toaddressthisissue,theGeorgiaInstituteofTechnologyhasconductedamultiyearresearchprogramaimedatmakingimprovementstotheprocessbywhichtheconditionofexistingbridgestructuresinGeorgiaareassessed.TheendproductofthisresearchprogramissetofrecommendedguidelinesfortheevaluationofexistingbridgesEllingwoodetal.2009.Theseguidelinesareestablishedbyacoordinatedprogramofloadtestingandadvancedfiniteelementmodeling,whichhavebeenintegratedwithinastructuralreliabilityframeworktodeterminepracticalbridgeratingmethodsthatareconsistentwiththoseusedtodeveloptheAASHTOLRFDBridgeDesignSpecificationsAASHTO2007.Itisbelievedthatbridgeconstructionandratingpracticesaresimilarenoughinothernonseismicareastomaketheinferences,conclusions,andrecommendationsvalidforlargeregionsinthecentralandeasternUnitedStatesCEUS.TherecentimplementationofLRFDanditscompanionratingmethod,LRFR,bothofwhichhavebeensupportedbystructuralreliabilitymethods,enablebridgedesignandconditionassessmenttobeplacedonamorerationalbasis.Notwithstandingtheseadvances,improvedtechniquesforevaluatingthebridgeinitsinsituconditionwouldminimizethelikelihoodofunnecessaryposting.Forexample,materialstrengthsinsitumaybevastlydifferentfromthestandardizedornominalvaluesassumedindesignandcurrentratingpracticesattributabletostrengthgainofconcreteononehandanddeteriorationattributabletoaggressiveattackfromphysicalorchemicalmechanismsontheother.Satisfactoryperformanceofawellmaintainedbridgeoveraperiodofyearsofserviceprovidesadditionalinformationnotavailableatthedesignstagethatmightbetakenintoaccountinmakingdecisionsregardingpostingorupgrading.Investigatingbridgesystemreliabilityratherthansolelyrelyingoncomponentbasedratingmethodsmayalsobeofsignificantbenefit.Properconsiderationofthesefactorsislikelytocontributetoamorerealisticcapacityratingofexistingbridges.ThispaperisthesecondoftwocompanionpapersthatprovidethetechnicalbasesforproposedimprovementstothecurrentLRFRpractice.ThefirstpaperWangetal.2011summarizedthecurrentbridgeratingprocessandpracticesintheUnitedStates,andpresentedtheresultsofacoordinatedbridgetestingandanalysisprogramconductedtosupportrevisionstothecurrentratingprocedures.ThispaperdescribesthereliabilityanalysisframeworkthatprovidesthebasisforrecommendedimprovementstotheMBEandrecommendsspecificimprovementstotheMBEthataddresstheprecedingfactors.1SeniorStructuralEngineer,Simpson,Gumpertz,andHeger,Inc.,41SeyonSt.,Waltham,MA02453formerly,GraduateResearchAssistant,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology.2Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA303320355correspondingauthor.Emailellingwoodgatech.edu3Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA303320355.Note.ThismanuscriptwassubmittedonMarch19,2010approvedonAugust2,2010publishedonlineonOctober14,2011.DiscussionperiodopenuntilApril1,2012separatediscussionsmustbesubmittedforindividualpapers.ThispaperispartoftheJournalofBridgeEngineering,Vol.16,No.6,November1,2011.©ASCE,ISSN10840702/2011/6863–871/25.00.JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011/863Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp//www.ascelibrary.orgReliabilityBasesforBridgeLoadRatingBridgedesign,ascodifiedintheAASHTOLRFDspecifications2007,isestablishedbymodernprinciplesofstructuralreliabilityanalysis.Theprocessbywhichexistingbridgesareratedmustbeconsistentwiththoseprinciples.Uncertaintiesintheperformanceofanexistingbridgearisefromvariationsinloads,materialstrengthproperties,dimensions,naturalandartificialhazards,insufficientknowledge,andhumanerrorsindesignandconstructionEllingwoodetal.1982Galambosetal.1982Nowak1999.Probabilitybasedlimitstatesdesign/evaluationconceptsprovidearationalandpowerfultheoreticalbasisforhandlingtheseuncertaintiesinbridgeevaluation.ThelimitstatesforbridgedesignandevaluationcanbedefinedinthegeneralformGðXÞ¼0ð1ÞwhereX¼ðX1X2X3XnÞloadandresistancerandomvariables.Onthebasisofbridgeperformanceobjectives,theselimitstatesmayrelatetostrengthforpublicsafetyortoexcessivedeformation,cracking,wearofthetrafficsurface,orothersourcesoffunctionalimpairment.Astateofunsatisfactoryperformanceisdefined,byconvention,whenGðXÞ0.Thus,theprobabilityoffailurecanbeestimatedasPf¼P½GðXÞ0C138¼ZΩfXðxÞdxð2ÞwherefXðxÞjointdensityfunctionofXandΩfailuredomaininwhichGðxÞ0.InmodernfirstorderFOreliabilityanalysisMelchers1999,Eq.2isoftenapproximatedbyPf¼ΦðC0βÞð3ÞwhereΦðÞstandardnormaldistributionfunctionandβreliabilityindex.Forwellbehavedlimitstates,Eq.3usuallyisanexcellentapproximationtoEq.2,andβandPfcanbeusedinterchangeablyasreliabilitymeasuresEllingwood2000.WhenthefailuresurfaceinEq.1iscomplexorwhenthereliabilityofastructuralsystem,inwhichthestructuralbehaviorismodeledthroughfiniteelementanalysis,isofinterest,Eq.2canbeevaluatedefficientlybyMonteCarloMCsimulation.TheAASHTOLRFDBridgeDesignSpecifications2007areestablishedonFOreliabilityanalysis,appliedtoindividualgirdersNowak1999KimandNowak1997TabshandNowak1991.WiththesupportingprobabilisticmodelingofresistanceandloadtermsNowak1993BartlettandMcGregor1996MosesandVerma1987,anexaminationofexistingbridgedesignpracticesledtoatargetreliabilityindex,β,equalto3.5basedona75yearserviceperiodNowak1999,Moses2001.Consistentwithsuchreliabilitybasedperformanceobjective,theAASHTOLRFDspecificationsstipulatethatinthedesignofnewbridges125Dþ15DAþ175ðLþIÞϕRnð4ÞwhereDdeadloadexcludingweightofthewearingsurfaceDAweightofthewearingsurfaceasphaltLþIrepresentsliveloadincludingimpactϕRndesignstrength,inwhichRnnominalresistanceandϕresistancefactorwhichdependsontheparticularlimitstateofinterest.Thisequationisfamiliartomostdesigners.Whenthereliabilityofanexistingbridgeisconsidered,allowanceshouldbemadeforthespecificknowledgeregardingitsstructuraldetailsandpastperformance.Fieldinspectiondata,loadtesting,materialtests,ortrafficsurveys,ifavailable,canbeutilizedtomodifytheprobabilitydistributionsdescribingthestructuralbehaviorandresponseinEq.2.ThemetricforacceptableperformanceisobtainedbymodifyingEq.2toreflecttheadditionalinformationgatheredPf¼P½GðXÞ0jHC138PTð5ÞwhereHrepresentswhatislearnedfromprevioussuccessfulperformance,inserviceinspection,andsupportinginsitutesting,ifany.Thetargetprobability,PT,shoulddependontheeconomicsofrehabilitation/repair,consequencesoffutureoutages,andthebridgeratingsought.IntheAASHTOLRFRmethod2007,thetargetβfordesignlevelcheckingbyusingHL93loadmodelatinventorylevelis3.5,whichiscomparabletothereliabilityfornewbridges,whereasthetargetβforHL93operatinglevelandforlegal,andpermitloadsisreducedto2.5owingtothereducedloadmodelandreducedexposureperiod5yearsMoses2001.ThepresenceofHinEq.5isaconceptualdeparturefromEqs.2and3,whichprovidethebasisforLRFD.Forexample,trafficdemandsonbridgeslocatedindifferentplacesinthehighwaysystemmaybedifferent.Totakethissituationintoaccount,LRFRintroducesasetofliveloadfactorsforthelegalloadrating,whichdependontheinsitutrafficdescribedbytheaveragedailytrucktrafficADTT.Furthermore,thecomponentnominalresistanceinLRFRisfactoredbyasystemfactorφsandamemberconditionfactorφcinadditiontothebasicresistancefactorφforaparticularcomponentlimitstate.Thesystemfactordependsontheperceivedredundancylevelofagivenbridgeinitsrating,whereastheconditionfactoristoaccountforthebridgessitespecificdeteriorationcondition,andpurportstoincludetheadditionaluncertaintybecauseofanydeteriorationthatmaybepresent.ThebasisfortheLRFRtabulatedvaluesforφcwillbefurtherexaminedlaterinthispaper.TheLRFRoptionintheAASHTOMBEextendsthelimitstatedesignphilosophytothebridgeevaluationprocessinanattempttoachieveauniformtargetlevelofsafetyforexistinghighwaybridgesystems.However,theuncertaintymodelsofloadandresistanceembeddedintheLRFRratingformatrepresenttypicalvaluesforalargepopulationofbridgesinvolvingdifferentmaterials,constructionpractices,andsitespecifictrafficconditions.AlthoughtheLRFRliveloadmodelhasbeenmodifiedforsomeofthespecificcasesasdiscussedpreviously,thebridgeresistancemodelshouldalsobecustomizedforanindividualbridgebyincorporatingavailablesitespecificknowledgetoreflectthefactthateachbridgeisuniqueinitsasbuiltcondition.Aratingprocedurethatdoesnotincorporateinsitudataproperlymayresultininaccurateratingsandconsequentunnecessaryrehabilitationorpostingcostsforotherwisewellmaintainedbridges,asindicatedbymanyloadtestsNowakandTharmabala1988BakhtandJaeger1990Mosesetal.1994FuandTang1995Faberetal.2000Barker2001Bhattacharyaetal.2005.Improvementsinpracticalguidancewouldpermitthebridgeengineertoincludemoresitespecificknowledgeinthebridgeratingprocesstoachieverealisticevaluationsofthebridgeperformance.Thisguidancemusthaveastructuralreliabilitybasis.ImprovementsinBridgeRatingbyUsingReliabilityBasedMethodsInthissection,thebridgeratingsinlightofthereliabilitybasedupdatingofinservicestrengthdescribedintheprevioussectionareexamined.Thepossibilitiesofincorporatingavailablesitespecificdataobtainedfrommaterialtests,loadtests,advanced864/JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp//www.ascelibrary.orgstructuralanalysis,andsuccessfulserviceperformancetomakefurtherrecommendationsforimprovingratinganalysisareexplored.IncorporationofInSituMaterialTestingThecompanionpapersummarizedtheloadtestofBridgeID1290045,areinforcedconcreteTbeambridgethatwasdesignedaccordingtotheAASHTO1953designspecificationforH15loadingandwasconstructedin1957.Thespecified28daycompressionstrengthoftheconcretewas17.2MPa2,500psi,whereastheyieldstrengthofthereinforcementwas276MPa40ksi.Thescheduleddemolitionofthisbridgeprovidedanopportunitytosecuredrilledcorestodeterminethestatisticalpropertiesoftheinsitustrengthofthe51yearoldconcreteinthebridge.Fourinchdiameterdrilledcoresweretakenfromtheslabofthebridgebeforeitsdemolition.Sevencoresweretakenfromtheslabatsevendifferentlocationsalongboththelengthandwidthofthebridge.Coresalsoweretakenfromthreeofthegirdersthatwereingoodconditionafterdemolitionthesewerecutinto203mm8in.lengthsandthejaggedendsweresmoothedandcapped,resultinginatotalof14girdertestcylinders.Testsofthese102203mm48in.cylindersconformedtoASTMStandardC42ASTM1995andtheresultsarepresentedinTable1.Ananalysisofthesedataindicatednostatisticallysignificantdifferenceintheconcretecompressionstrengthinthegirdersandslab,andthedatawerethereforecombinedforfurtheranalysis.Themeanaveragecompressionstrengthoftheconcreteis33MPa4,820psiandthecoefficientofvariationCOVis12,whichisrepresentativeofgoodqualityconcreteBartlettandMacGregor1996.Themeanstrengthis1.93timesthespecifiedcompressionstrengthoftheconcrete.Thisincreaseincompressionstrengthoveraperiodofmorethan50yearsistypicaloftheincreasesfoundforgoodqualityconcretebyotherinvestigatorsWashaandWendt1975.Iftheseresultsaretypicalofwellmaintainedolderconcretebridges,theinsituconcretestrengthislikelytobesubstantiallygreaterthanthe28daystrengththatiscustomarilyspecifiedforbridgedesignorconditionevaluation.Accordingly,thebridgeengineershouldbeprovidedincentivesintheratingcriteriatorateabridgebyusingthebestpossibleinformationfrominsitumaterialstrengthtestingwheneverfeasibleEllingwoodetal.2009.Itiscustomarytobasethespecifiedcompressionstrengthofconcreteonthe10thpercentileofanormaldistributionofcylinderstrengthsStandard31805ACI2005.Asuitableestimateforthis10thpercentilebasedonasmallsampleofdataisprovidedbyfc¼C22Xð1C0kVÞð6ÞwhereC22XsamplemeanVsamplecoefficientofvariationandk¼plowerconfidenceintervalonthe10thpercentilecompressionstrength.Byusingthe21testsfromBridgeID1290045withp¼75asanexample,k1.520Montgomery1996andfccanbeexpressedasfc¼ð1–1520012Þ4820¼3941psi27.17MPa,avaluethatis58higherthanthe17.2MPa2,500psithatotherwisewouldbeusedintheratingcalculations.IntheFEmodelingofthisbridgethatprecededthesestrengthtests,theconcretecompressionstrengthwassetat17.2MPa2,500psi,whichwastheonlyinformationavailablebeforethematerialtest.Todeterminetheimpactofusingtheactualconcretestrengthinanolderbridgeontheratingprocess,thefiniteelementmodelwasrevisedtoaccountfortheincreasedconcretecompressionstrengthandthecorrespondingincreaseinstiffnessintotheanalysisofthebridge.Onlyamodestenhancementintheestimatedbridgecapacityinflexurewasobtained,buta34increasewasachievedintheshearcapacityratingsforthegirdersbyusingtheresultsofTable1.BridgeSystemReliabilityAssessmentontheBasisofStaticPushDownAnalysisAlthoughcomponentbaseddesignofanewbridgeprovidesadequatesafetyatreasonablecost,componentbasedevaluationofanexistingbridgeforratingpurposesmaybeoverlyconservativeandresultinunnecessaryrepairorpostingcosts.Itispreferabletoperformloadratingregardingbridgepostingorroadclosurethroughasystemlevelanalysis.Aproperlyconductedproofloadtestcanbeaneffectivewaytolearnthebridgesstructuralperformanceasasystemandtoupdatethebridgeloadcapacityassessmentinsituationsinwhichtheanalyticalapproachproduceslowratings,orstructuralanalysisisdifficulttoperformbecauseofdeteriorationorlackofdocumentationSarafandNowak1998.However,aproofloadtestrepresentsasignificantinvestmentincapital,time,andpersonnel,andthetradeoffbetweentheinformationgainandtheriskofdamagingthebridgeduringthetestmustbeconsidered.ProoftestsarerarelyconductedbythestateDOTsWangetal.2009forratingpurposes.OneofthekeyconclusionsfromthecompanionpaperWangetal.2011,inwhichbridgeresponsemeasurementsobtainedfromtheloadtestsofthefourbridgeswerecomparedwiththeresultsoffiniteelementanalysesofthosebridgeswithABAQUS2006,wasthatthefiniteelementmodelingprocedurewassufficientforconductingvirtualloadtestsofsimilarbridges.Thesevirtualloadtestscanprovidethebasisfordevelopingrecommendationsforimprovingguidelinesforbridgeratingsbyusingstructuralreliabilityprinciples.Asnotedintheintroductorysection,suchguidelinesrequirethebridgetobemodeledasastructuralsystemtoproperlyidentifytheperformancelimitstatesonwhichsuchguidelinesaretobebased.Toidentifysuchperformancelimitstatesandtogainarealisticappraisaloftheconservatisminherentincurrentbridgedesignandconditionratingprocedures,aseriesofstaticpushdownanalysesofthefourbridgeswasperformed.Theseanalysesareaimedatdeterminingtheactualstructuralbehavioroftypicalbridgeswhenloadedwellbeyondtheirdesignlimitasasidelight,theyprovideadditionalinformationtosupportrationalevaluationofpermitloadapplicationssection6A.4.5intheManualofBridgeEvaluation.Inapushdownanalysis,tworatingvehiclesareplacedsidebysideonthebridgeinapositionthatmaximizestheresponsequantityofinterestintheevaluatione.g.,maximummoment,shear,anddeflection.Theloadsarethenscaledupwardstaticallyandtheperformanceofthebridgesystemismonitored.Thedeadweightofthebridgestructureisincludedintheanalysis.Theresponseisinitiallyelastic.Asthestaticloadincreases,however,elementsofthebridgestructurebegintoyield,crack,orbuckle,andthegeneralizedloaddeflectionbehaviorbecomesnonlinear.Ifthebridgestructureisredundantandthestructuralelementbehaviorsareductile,substantialloadredistributionmayoccur.Atsomepoint,however,asmallincrementinstaticloadleadstoalargeincrementindisplacement.Atthatpoint,thebridgehasreacheditspracticalloadcarryinglimit,andisatastateofincipientcollapse.Table1.CompressionTestsof48inCoresDrilledfromRCConcreteBridgeID1290045SourceNumberAveragepsiStandarddeviationpsiCoefficientofvariationGirder144,8806030.12Slab74,6985730.12Overall214,8205860.12Note1psi¼69Pa.JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011/865Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp//www.ascelibrary.orgThestaticpushdownanalysisisillustratedinFig.1fortheRCTbeambridgeID1290045.TheFEmodelingwasperformedwithABAQUS2006,withrandommaterialpropertiesdeterminedbytheirrespectivemeanvalues.Thepointofinitialyieldingoccursatapproximately4.31timestheHS2044designloadconfiguration,atadeflectionofapproximately36mm1.4in.,whichisequaltoapproximately1345timesthespan.Theultimateliveloadcapacityofthebridgeisapproximately4.8timestheappliedHS2044loads.FromFig.1,this52yearoldbridgeshowsaconsiderabledegreeofductilityinbehavior.ThelevelofloadimposedbythefourfullyloadedtrucksduringtheloadtestdescribedinthecompanionpaperisalsoshowninFig.1thetestloadinmaximumgirdermomentwasapproximately1.3timesthetwosidebysideHS2044loads.Thecapacityofthisbridgesystemissubstantiallyinexcessofwhatagirderbasedcalculationwouldindicate.Similarpushdownanalyseswereperformedontheotherbridgesdescribedinthecompanionpaper,yieldingtheresultssummarizedinTable2.Theelasticrangesofallfourbridgesareinexcessof4timesthedesignloadlevel,indicatingthelevelofconservatismassociatedwithtraditionaldesignandratingprocedures.AspartoftheefforttodeveloptheAASHTOLRFDBridgeDesignSpecifications,extensivedatabasesweredevelopedtodescribethestrengthofindividualbridgegirdersandvehicleliveloadsprobabilisticallyNowak1999Moses2001.TheHL93liveloadmodelisanoutgrowthofthispreviousresearch.Thatresearchfocusedonthecapacityofindividualbridgegirderssystemeffectswereincludedindirectlyandapproximatelythroughnewgirderdistributionfactorsthatweredevelopedinthecourseoftheproject.Thecapacityofabridgestructuralsystemislikelytobedifferentfromthecapacitypredictedfromananalysisofindividualgirders.Todeterminetheadditionallevelofconservatismifanythatarisesfromsystembehavior,afiniteelementbasedsystemreliabilityanalysisofallfourstudybridgeswasconducted.ThissystemreliabilityanalysisprovidesadditionalperspectiveontheunknownlevelofconservatismfurnishedbythecurrentgenerationofreliabilitybasedconditionevaluationandratingproceduresembodiedintheAASHTOManualforBridgeEvaluation,andhasimplicationsfortheuseofsuchmethodsinpermitratingsforextremevehicleloads.ToacceleratetheFEbasedreliabilityanalysis,efficientFEmodelsofthesamplebridgesweredevelopedwiththeopensourceplatform,OpenSeesVersion2.2.2.ThemoredetailedABAQUSmodels,whichhadbeenvalidatedfromtheloadtestresults,wereemployedtoconfirmthebridgestructuralbehaviorpredictedbytheOpenSeesmodelsasthesystemwasloadedbeyonditsdesignlimit.ByusingtheRCTbeambridgeagainasanexample,Fig.1illustratestheconsistencyachievedbetweentheABAQUS2006andtheOpenSeesmodelsthroughacompletepushdownanalysis,inwhichthebridgeisloadedwellintotheinelasticrange.Followingthisvalidation,thesystemperformanceofthesamplebridgeswascharacterizedstatisticallybypropagatingtheuncertaintiesinmaterialstrengths,stiffnesses,andgeometrythroughtheOpenSeesanalysisbyusingaLatinHypercubeSamplingtechniqueImamandConover1980toachieveefficientcoverageofthesamplespacewitharelativelyfewFEanalyses.TherandomvariablesinvolvedintheseFEanalysestocapturebridgestructuralperformancearedescribedwithstatisticsdefinedintheLRFDdatabasesmentionedpreviously.Thelimitstateofperformancewasassumedasthepointatwhichthebridgesystemexitstheelasticrange,asidentifiedfromitsloaddeflectioncurveseeFig.1.Theflexuralcapacitiessodeterminedfromthissystemreliabilityanalysiswererankorderedandplottedonlognormalprobabilitypaper,asillustratedinFig.2forthestraightapproachRCbridgeID1290045.Thelognormaldistributionprovidesagoodfittothesedata.Themeanandcoefficientofvariationinthesystemcapacityofthisbridgeatfirstyieldare4.31timestheappliedFig.1.PushdownanalysisofRCTbeambridgeID12900451in¼254mmTable2.AnalysisofBridgeCapacityDeterminedasthePointofFirstYieldBridgeIDCountyTypeDesignloadLoadfactorondesignloadLoadfactoronHS2012900450GordonRCTstraightnotpostedH157.464.3101501080BartowRCTskewedpostedHS156.004.5022300340PauldingPrestressedstraightnotpostedHS205.945.9408500180DawsonSteelgirderstraightpostedH159.935.37Fig.2.LognormalfitofthebridgesystemresistanceoftheRCBridgeID1290045866/JOURNALOFBRIDGEENGINEERING©ASCE/NOVEMBER/DECEMBER2011Downloaded21Mar2012to180.95.224.53.RedistributionsubjecttoASCElicenseorcopyright.Visithttp//www.ascelibrary.org

注意事项

本文(外文翻译--桥梁使用系统可靠性评估 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5