会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文翻译--气动人工肌肉特性的约束影响的实验研究 英文版.pdf

  • 资源星级:
  • 资源大小:586.56KB   全文页数:6页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--气动人工肌肉特性的约束影响的实验研究 英文版.pdf

9781424484522/11/26.00©2011IEEEFPM2011ExperimentalResearchoftheInfluenceofConstraintforPneumaticArtificialMuscleCharacteristicZangKejiang,MaYanCollegeofelectromechanicalengineeringNortheastForestryUniversityHarbin,Chinakjzang163.comSunNing,LiXiuchen,ZhangLanCollegeofmechanicalengineeringJiamusiUniversityJiamusi,ChinaAbstractPneumaticartificialmusclePAMisanewpneumaticactuator.Alotofworkhavebeencompletedabouttheprinciple,theoretical,experimentalmodelingandapplicationsofpneumaticartificialmuscle.ResearchershavefoundthatPAMsexhibitnonlinearcharacteristic.Baseonthepublishedliteratures,nonlinearcharacteristicrelatedtoelasticity,frictionbetweenrubberandbraidandtheconstraintring.Theformertwoaspectshavebeenmainlystudiedinthepublishedpapers.However,studyontheinfluenceofconstrainsontheendofpneumaticartificialmuscleisstillrare.ThisstudyestablishesthePAMstaticcharacteristicexperimentalsystem,andthePAMcharacteristicsaboutmultipleconstraintsaretested.Throughtheanalysisofexperimentalresults,theinfluenceisobtainedwhichconstraintstheworkforpneumaticartificialmuscleworkingcharacteristics.KeywordspneumaticartificialmusclePAM,constraints,staticcharacteristics,experimentalresearchI.INTRODUCTIONPneumaticartificialmuscleisanewkindofpneumaticactuatorwiththeadvantagesofcleanness,lightweight,lowcost,easymaintenance,compactstructureandhighpower/volumeratio.Forthisreason,theyarewidelyconcernedbyacademicstudyandengineeringapplication.Thepneumaticmusclewasinventedin1950sinordertoprovidedriversforprosthesisorrehabilitationmechanical.However,forthepracticalproblems,suchaspneumaticpowerstorage,availabilityandpoorqualityvalvetechnologyatthattime,pneumaticartificialmusclehavenotbeendevelopedandapplied.Inthe1988s,engineersoftheJapanesetypemanufactureBridgestoneproposedmorepowerfulversionoftheredesignedpneumaticartificialmusclecalledRubbertuatorintendedtomotorisethoughsoftyetpowerfulrobotarms.TheywerecalledSoftArmsandwerecommercializedasservicerobotswhichhavealsobeenstudied.Theartificialmuscle,whichissimpleindesign,ismadeofrubberinnertubecoveredwithashellbraidedaccordingtohelicalweaving.Themuscleisclosedbytwoends,onebeingtheairinputandtheotherbeingforceattachmentpoint.Thebraidfibersrunhelicallyaboutthemuscleslongaxisatananglecalledinterweaveangle.Whenpressureissupplied,theinnertubetransformed,togetherwithsetsofradialmovementdrivingweaving,interweaveangleincreasing,theaxialbraidsleeveshortingwhichpullingtheendoftheloadandweavingsetsoffilamentsproducedtensionatthesametime,thenthetensionandinternalpressureequilibrium.BecauseofPAMsworkingcharacteristicssimilartoanimalmuscle,itiscalledpneumaticactuatorpneumaticartificialmuscle12.Pneumaticartificialmuscleisanewpneumaticactuator.Alotofworkhavebeencompletedabouttheprinciple,theoretical,experimentalmodelingandapplicationsofpneumaticartificialmuscle.ResearchershavefoundthatPAMsexhibitnonlinearcharacteristic.Baseonthepublishedliteratures34,nonlinearcharacteristicrelatedtoelasticity,frictionbetweenrubberandbraidandtheendconstraints.Theformertwoaspectshavebeenmainlystudiedinthepublishedpapers.However,studyontheinfluenceoftheconstraintsontheendofpneumaticartificialmuscleisstillrare.ThisstudyestablishesthePAMstaticcharacteristicexperimentalsystem,andthePAMcharacteristicsaboutmultipleconstraintsaretested.Throughtheanalysisofexperimentalresults,theinfluencethatconstraintsworkforpneumaticartificialmuscleworkingcharacteristicisobtained.II.EXPERIMENTALPNEUMATICSYSTEMA.ExperimentalrigThispneumaticexperimentalsystem9ÔFig.19Õisdesignedtostudytherelationshipsofthepressure,contractionandforceofPAMswithdifferentconstraints.Theexperimentalsystemcontainselementsshowninthefollowingtable.TABLEI.DETAILSHEETComponentnameComponenttypeComponenttechnicaldataairsourceFumaCEBMpower11KWmaximumpressure0.8MPagasholder2LsolenoidvalvesFESTOR107supplyvoltageDC24VoutpressÖ00.6MPapressuresensorSMCPSE540AR06supplyvoltageDC1224Vpressurerange01MPaaccuracy±0g5loadsensorCZL3supplyvoltageDC1224Vloadrange050Kgaccuracy±0g03PAMHomemadeinitiallength176mminitialdiameter8mm132pressurerange00.3MPasteppermotor86BYGH450B113stepangleaccuracy2stepangle1.8emaxtorqueÖ6.7NmguidescrewSFU1605nominaldiameterÖ16mmlead5mmratedload7.65KNdisplacementsensorKTC500lin±0.058R5.3K¡computerLEGEND11CPUPentiumIII450RAM256MdatacollectorWSUSBresolution8accuracy0.003FSf1LSBdriverCW250ACsupplyVoltageDC1224Vmodeofoperation1/5Ã1/10Ã1/25Ã1/40Ã1/50Ã1/100Ã1/200pulserMPTGsupplyVoltageDC100250VoutputFrequency69999Hzweightcomponentsofnationalstandards2KgreducingvalveIR202002GRmaxsuppress1MPaoutpress0.010.8MPaFigure1.PneumaticexperimentalsystemThefeedequipmentiscomposedoffourparts9æsteppermotor,pulser,driverandguide.Thepulseroutputspulsestosteppermotorsdriverstodrivethesteppermotorsforwardorbackward.Thepulsercanbemeasuredin1/4998.Thesteppermotorturnsafullcircleby200steps.Theleadofscrewis5mm/r.Thepositionerrorislittleabout5e6mm/r.Straightlineleadrailsareadoptedintheexperimentalsystem,withgoodaccuracyandstabilization.Fig.1showsanordinarypneumaticexperimentalsystem.Thecomputercontrolledsolenoidvalvescanoutputapredeterminedgaspressure.WhencompressedgasentersPAM,itcontractsandproducesapullingforce.Thegassourceisusuallyacompressor.ClearlytheexperimentshouldincludebothasolenoidvalvesandPAM.Firstwediscussthesolenoidvalves.Thisisacomputercontrolledsystemoutputsapredeterminedgaspressurewithinadefinitefieldwhichisproportionaltothevoltagewhichasasolenoidvalvesinput,whosequantitycanbecontrolledbythecomputer.Thepneumaticexperimentalsystemconsistsofapressuresensor,aloadsensorandadisplacementsensor.Thepressuresensormeasurestheoutputgaspressure,theloadsensormeasurestheoutputload,andfeedthesebacktothecontrolcircuit.Themagnitudeofthegaspressureoutputfromthecompressorshouldbelargerthanthemaximalgaspressureoutputfromthesolenoidvalves.B.MuscleTheartificialmuscleconsistsoftheinnerrubbertubewherethenaturalrubberlatexthroughthevulcanizingprocesshasbeenusedasshowninFig.2.Inordertoreducetheinfluenceoftherubberelastic,therubberusedintheexperimentalisverythin.TheoutershellisthebraidedsleeveseeFig.2.Figure2.RubbertubeandbraidedsleeveTheassemblyoftheartificialmuscleisshowninFig.3,onesideofwhichistheairinletandtheothersideistheclosedend.Inthisexperiment,fourtypesofthenumberoftheconstraintrings0,1,2,4havebeentested5.Figure3.PneumaticartificialmusclewithconstraintringsIII.ISOMETRICLOADEXPERIMENTTheexperimentsetupisshowninFig.4.OneendofPAM5ismountedtightlytoametalframe.Theotherendofthemuscleistiedbywireropewithdifferentloadssuspendedtoit.Displacementsensor8isfixedtothemetalframesliderodisconnectedtoremovableendofthemuscle,sothataprecisemeasurementismade.ThepositiondataobtainedfromdisplacementsensorissentbacktothePCthroughtheA/Dconverter.Toprovidethepowerforthemuscle,aircompressor1cansupply0.8MPacompressedair.Thecomputercontrolledsolenoidvalves2canoutputapredeterminedgaspressure.Inthistest,weights7are4Kgand6Kg.Compressedgasentersmuscle,PAMcontractswhiletheweightisabletomaintainconstantpullingforce.TherealtimedatathroughthesensorsareloggedtothePC.Theexperimentisrepeatedseveraltimesunderdifferentconstraints.Thenwecanstatisticallyanalyzerubbertubebraidedsleeve133theresultstofindouttherelationshipbetweenthecontractionratioandpressureofthemusclefordifferentload6789.Figure4.PrincipleblockdiagramofisometricloadexperimentalsystemThelengthofmuscleismeasuredbydisplacementsensor9Ø0lisinitiallength,lisrealtimelength,thencontractionratioεiscalculatedas00/lllε−1Fig.5showstherelationbetweencontractionratioandpressure.Fromthisfigure,wecanobviouslyconcludethattheexperimentalcurveisahysteresiscurve,thisisbecauseofachangeindirectionoffrictionwhenthePAMworkingduringatestperiod.Andatlowpressure,theexperimentalcurveshowsmorehysteresisthanathighpressure.ThiskindofphenomenonisreferredtotheinternalfrictioncoefficientofPAMandfillingpressure10.Figure5.PressureversuscontractionratioInordertohighlighttheinfluenceofconstraints,constraintringdiameterslightlylargerthantheinitialdiameterofPAM.Whenthecontractionratioreachesacertainvalue,theconstraintringsbegintoworkonthePAM.Whenconstraintringsdontwork,theexperimentcurvesaresuperpositionwhenconstraintringsunderworking,thecontractionisobviouslysmallerwhenincreasingtheconstraintringsinthesamepressure.ConstraintsreducethePAMcontractionability.IV.ISOMETRICPRESSUREEXPERIMENTIsometricpressureexperimentstudiestherelationshipbetweenthecontractionratioandforceundercertainconstantpressure.OneendofPAM5ismountedtightlytoametalframethroughloadsensor4.Theotherendofthemuscleisattachedonaslideplateslidingalonglinearguides,andtheslideplateemploysguidescrew7controlledbyasteppermotor6,thesetransmissioncomponentsareabletosimultaneouslyobtainhighcontrolaccuracyandoperatingefficiency.Inthistest,Pressurevalvesetpressureat0.1MPa,0.15MPa,0.2Mpaand0.25MPa.Thenbyusingthemotortochangethelengthofthemuscleunderthecorrespondingpressuresmentionedabove.ThedataofpullingforceanddisplacementthroughthesensorsÄ4,6ÅaresenttothePC.Theexperimentisrepeatedseveraltimesunderdifferentconstraints.Wecancarryoutdifferentconstraintisometricpressureexperimentsunderthedifferentpressure11.Figure6.PrincipleblockdiagramofIsometricpressureexperimentalsystemFig.7showstherelationbetweencontractionratioandforce.TheoutputforceofPAMisrelatedtocontractionratio,thegreaterthecontractionratio,thegreatertheoutputforce.Asmentionedabove,thePAMisometricpressurecurveisahysteresiscurveduetotheinfluenceoffriction.Withtheincreaseinthenumberofconstraints,thereexistssignificanthysteresisphenomenon,theexperimentalcurvesdropasawhole,thelinearitydegreebecomepoor,butthetrenddonotchange,whichclearlyindicatethatconstraintsaresignificantlyimpactsthestaticcharacteristicsofPAM.Figure7.ContractionratioversusforceV.ISOMETRICLENGTHEXPERIMENTTheexperimentrigisshowninFig.8.OneendofPAM5isfixedonframe.TheotherendofthemuscleconnectsaslideplateslidingalonglinearguideswhichisthesamestructureasIsometricpressureexperimentsystem.Thesystemiscomposedofaslideplate,aguidescrew7andasteppermotor6selflockdevicewhichisusedtoaccuratelychangethelengthofmuscle.Thecomputercontrolledsolenoidvalves2canmakegaspressurechangeregularly.Whencompressedgasentersthemuscle,apullingforceisproducedandworkingontheloadsensor4.TheloaddataobtainedfromloadsensorissentbacktothePCthroughtheA/Dconverter.Theguidescrewiscausedtorotatebymeansofsteppermotortochangelengthofthemuscle.Theexperimentisrepeatedseveraltimesusingdifferentconstraints0,1,2,4.ntsconstrai44tsconstrain23sntconstrai12tconstrain01−−−−ntsconstrai44tsconstrain23sntconstrai12tconstrain01−−−−134Fig.9showstherelationbetweenpressureandforce.Theresultisaloadcycleofactuatorforceintherangeofoperationalpressure.Fig.9showsthatforcedecreaseswithactuatorconstraint.Tinyforceisalmostalwaysmeasuredduringthedecreasingpressurephaseofthetest12.Figure8.PrincipleblockdiagramofisometriclengthexperimentalsystemFigure9.PressureversusforceFig.9alsoshowsthattheoutputforceofpneumaticartificialmuscleisproportionaltoinflationpressure.However,duringthistest,frictionbetweenrubbertubeandbraidedsleeveisverysmallthehystereticbehaviorappearstodecrease.Therubberthickness,whichisusedinthisexperimental,issmall.Therubberelasticforceissmall.Thegraphclearlyshowsthatthesystemmentionedabovehavealittleinfluencetothisexperiment.Thelinearrelationshipbetweenpressureandoutputforcedonotchangewhenthenumberofconstraintsincreasing.However,thereisachangeintheirslope.Withouttheinfluenceoftherubberelasticforceandfrictionbetweenrubbertubeandbraidedsleeve,theconstraintinfluenceisobvious.VI.COMPARISONOFMODELTOEXPERIMENTInordertoverifywhethertheresultsarereasonable,atheoreticalapproachisintroducedwithoutconsideringthedetailedgeometricstructuremodifiedfromtheworkreportedin.Tofindtheequationofthemuscleforcebyusingtheprincipleofvirtualwork,theremustbeanequilibriumbetweenthevirtualworkindWdoneinthemusclebythepressureandthevirtualworkdonebythedisplacementofthemuscleoutdW11seeFig.10.Figure10.Schematicdiagramofthetwointeractingvirtualworkcomponents.indWcanbecalculatedwiththehelpoftherelativepressurep,thesurfaceofthepressureattackiS,thenormalvectoronids,theworkingdirectionoftheresultingforceidlandthechangeofthemusclevolumedViiiniiSiiSdWpdsdlpdsdlpdV⋅⋅⋅⋅g179g1792TheaxialforceFandthemuscleaxialdisplacementdlproducetheoutervirtualworkdlFdWout⋅−3Byequatingboththevirtualworkcomponentsandusing2and3,theequationforthemuscleforceisderived.outindWdW4dldVPF⋅−5g131Byassumingthatthecontractingmusclesurfaceactsthesimilarasacylinder,indWcanbedividedintoanaxialandaradialcomponents.Theaxialcomponenthastheoppositeworkingdirectiontotheradialcomponent,seeFig.10.Theforceequationisfound22drFrrlprpdlππ−6APAMismodeledasacylinderandthewallthicknessisassumedtobezero.Thedimensionsofthiscylinderarethelengthlanddiameter2Dr.Assuminginextensibilityofthemeshmaterial,thegeometricconstantsofthesystemarethethreadlengthbandthenumberofturnsforasinglethreadn.Thefinaldimensionusedforthisformulationistheinterweaveangleθ,whichistheanglebetweenthethreadandthelongaxisofthecylinder.Theinterweaveanglechangesasthelengthoftheactuatorchanges.TherelationshipbetweentheseparametersisshowninFig.1113.WiththehelpofFig.11thecorrelationbetweenmuscleradiusr,musclelengthlandinterweaveangleθformulated.Duetothefact,thatthelengthofthefibersisconstantonefindsthat00llθθcoscosand00rrθθsinsin.0listheinitiallength,0ristheinitialradius,0θistheinitialinterweaveangle.ThisisusedtocalculatethecorrelationbetweenrandlipdsipdsFrdrdl−lidsidsntsconstrai44tsconstrain23sntconstrai12tconstrain01−−−−135

注意事项

本文(外文翻译--气动人工肌肉特性的约束影响的实验研究 英文版.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5