欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--汽车复合材料悬架摆臂的实验分析 英文版.pdf

    • 资源ID:97390       资源大小:540.19KB        全文页数:5页
    • 资源格式: PDF        下载积分:5积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--汽车复合材料悬架摆臂的实验分析 英文版.pdf

    ExperimentalanalysisofacompositeautomotivesuspensionarmM.PINFOLDandG.CALVERT"(UniversityofWarwick/RoverGroupGaydon,UK)Received11November1992;revised26March1993Inapplicationswhereweightsavingandpartsintegrationcanbeachieved,theRoverGrouphasbeeninvestigatingthedesignandmanufactureofcomponentsfromcompositematerials.Themethodsusedinthedifferentstepsinthedesign-to-manufacturecycleinthehighvolumeautomotiveindustryarerelativelywellknownforasteelcomponent,butarenotsowellestablishedforacompositecomponent.Adesignmethodologyforcompositeshasbeenemerginginwhichaprincipalprocedureisdesignanalysis.Oneofthemostestablishedmethodsofanalysisisthatusingthefiniteelementtechnique,andthisisbeingsupplementedwithexperimentaltestsonprototypesusingphotoelasticanalysisandstresspat-ternanalysisbythermalemission,coupledwithconventionalstraingaugemoni-toring.Littleworkhasbeenundertakentocorrelatetheresultsobtainedfromthesedifferenttestmethodsandtocomparetheresultswithmeasurementsmadeonanactualcomponent.Thispaperpresentssomeoftheworkundertakenconcerningtheanalysisandtestingofacompositeautomotivesuspensionarm.Theresultsobtainedfromthethreedifferentanalysistechniquesarecomparedwithexperi-mentaltestresults,andtheiraccuracyisdiscussed.Keywords:autmotivesuspensionarm;stressanalysis;finiteelementmethod;photoelasticanalysis;SPATE;straingauges;sheetmouldingcompoundSolanddeWildestatethatcompositematerialshavebeenusedincreasinglyasstructuralmaterials.Areasonforthis.,isthatcompositematerialshavehighstrengthtoweightandhighstiffnesstoweightratioswhichcansignificantlyreducetheweightofastructure.Perhapsthemostimportantfeatureofcompositematerialsisthattheirmechanicalp:opertiescanbe"tailored"tomeetaspecificcriterion.However,Johnsonetal?suggestthatcompositedesign,analysisandfabricationtechnologymustundergomajordevelopmentsandsuccessfuldemonstrationsbeforesignificantstructuralcomponentswillbeincorporatedinproductionautomobilesandtrucks.Compositematerialshavetocompetewithsteelwithintheengineeringenvironment.WithintheautomotiveindustrythisrequiresacertainamountoftechnologytransferfromplacessuchastheAdvancedTechnologyCentreattheUniversityofWarwick,whichworkwithmaterialmanufacturersandautomotiveengineerstoenableunderstandingaboutthesematerialsasanalter-nativetothetraditionalmaterialssuchassteel.Ifcom-positesaretocompetewithtraditionalmaterialsinarealsense,thenautomotivedesignersneedtobefullyaware0010-4361/94/010059-05©oftheirstrengthsandlimitationssothattheycanbeoneofperhapsmanyoptionsconsideredattheconceptstageofthedesign.Forthistohappenautomotiveengineersneedtocatchuponthetechniquesofdesigning,testingandmanufacturingcomponentsfromcomposites.Thiswillincludeunderstandinghowvariousmethodssuchasfiniteelement(FE)analysis,stresspatternanalysisbythermalemission(SPATE)andphotoelasticanalysiscanbeappliedtocompositecomponentsintheirdesignanddevelopment.Thusfarlittleworkappearstohavebeenundertakentostudywhethertheresultsobtainedfromthesedifferentanalysismethodscorrelatewithoneanotherorwithactualexperimentalresultsobtainedfromtestingarealcomponent.Inordertostudytheapplicationandcorre-lationofthedifferentanalysismethodstocompositematerials,acompositecomponent-anautomotivelowersuspensionarm-wasmanufactured.Thiscom-positecomponentwasanalysedbythethreemethodsdescribedaboveandalsotestedunderrealisticloadingconditions,withexperimentalresultsbeingobtainedfromstraingauges.1994Butterworth-HeinemannktdCOMPOSITES.VOLUME25.NUMBER1.199459,BallJoint°HousingFig.1ThecompositesuspensionarmDESIGNTheexistingsteellowersuspensionarmconsistsofninepiecesweldedtogetherwhilstthere-designedcompositecomponent-whichcanbeseeninFig.1-isasinglemouldedpart.Thematerialusedtomanufacturethesuspensionarmwasasheetmouldingcompound(SMC),comprisingapolyesterresinbondingagentwitha30%contentofrandomlyarrangedshortglassfibresandcal-ciumcarbonatefiIler.Theweightofthesteelsuspensionarmis2.53kgwhilstthere-designedSMCsuspensionarmcompletewithbushesandballjointweighs1.5kg.Thematerialpropertiesusedforthecompositesuspensionarmintheseanalyses,obtainedfromtestscarriedoutatRoversmaterialslaboratory,wereYoungsmodulus=10.5GPa,Poissonsratio=0.26anddensity=1.8x10-6kgmm-3.EXPERIMENTALTECHNIQUESPriortoundertakingexperimentalanalysisofanactualengineeringcomponent,someinitialvalidationworkwasrequiredtogainconfidenceinthetechniqueswhenappliedtosheetmouldingcompound.Therefore,fiatplates,beamsanddiscsconstructedfromSMCwereana-lysedundervariousloadingconditionsbeforeprogress-ingontothedesignedcomponent.Mostvalidationtestswerecarriedoutusingstrain-gaugedspecimenstocorrelatewiththefiniteelementanalysisresults.AlthoughitisrecognizedthatSMCisnotanisotropiematerialduetosomefibreorientationduringprocessing,forthepurposesofanalysisthemater-ialwasassumedtobeisotropic.Also,whentheactualSMCsuspensionarmwascutupandexamined,signifi-cantfibredistributionwasobservedintheribs.Itisfeltthatthecorrelationbetweentheexperimentalandanaly-sisresultsvalidatedthisassumptioninthecaseofthisparticularcomponent.StraingaugetestsBeforeundertakingtheexperimentaltestwork,thecom-positecomponentwasmountedviaitsrubbermountingbushesontoarelativelyinfinitelystiffstructure.Itisverydifficulttocoveralloftheloadingconditionswhencon-ductingexperimentaltestsandthusaworst-casescenarioisusuallyassumed.Theworst-caseloadingconditiononsuspensioncomponentsisknownaspot-holebrake.Thisattemptstosimulatethevehiclefallingintoadeeppot-holeat30mphwiththebrakesfullyappliedatthepointofimpact.Theresultantfore/aftandlateralloadsarethencalculatedbasedontheweightandvelocityofthevehicle.Duetothelimitationsofthetestrigthefullpot-holeloadscouldnotbeappliedtothecomponent,andthusreducedloadswiththesameresultantdirectionasthepot-holeloadswereappliedandtheresultsscaled.Theloadsappliedforthefullpot-holebrakecasewere24.2kNinXand8.2kNin"Y,andforthereducedloadcasewere5.9kNinXand2.02kNinY-seeFig.1.Thestraingaugesusedconsistedofsixthree-axisrosettegaugesand13single-gridgauges,with2.5mmgridlengths,chosentofitintotheradiiofthecomponentinanattempttomeasurethemaximumstrain,Gaugesweresituatedneartheballjointhousing,wheretheloadswereapplied,andaroundtheradiiofthebodymountingbushes,wherethecomponentwouldbemountedtothecarsubframe.Additionalstraingaugesweresituatedonsomeofthestrengtheningribsandclosetotheanti-rollbarmountingposition.SPATEanalysisStresspatternanalysisbythermalemission(SPATE)canbeusedtodeterminethesurfacestressesofcomponentsbystudyingthesmallchangesintemperatureduetocyclicloadingconditions.SPATEequipmentcomprisesadetectorunitwithscanninghead,ananaloguesignalprocessingunitandadigitalelectronicdataunit.Thesystemworksbydetectingtheminutetemperaturechangeswhichoccurwhenastructureiscyclicallyloaded.Theinfra-reddetectorscansthestructureandcorrelatesthemeasuredoutputwithareferencesignalfromtheloadingsystem.Anelectronicdataprocessingsystemcorrelatesthedetectedstress-inducedthermalfluctuationswiththeloadingreferencesignal.Acolourcontourmapofthesumoftheprincipalstresses(cr+4)isthenplotted,togetherwithabarchartgivingactualvalues.Thiscorrelationofsignalseffectivelyeliminatesallsignalfrequenciesotherthanthosecausedbytheloadingsystem,i.e.,allambienttemperaturefluctua-tions.TheSPATEsystemhasatemperatureresolutionof0.001°C,andaspatialresolutionoflessthanImm.ThistypeofanalysishasbeenshownbyanumberofauthorsTMtoalsobeapplicabletonon-isotropicmater-ialssuchascomposites,andthesmallerrors(6%)demonstratedfromsuchstudieswhencomparedwiththeoreticalorFEresultsarefelttobeduetoinaccuraciesinthematerialdataused4.Itisapparentfromthestudiesundertakenthattheuseofthermoelasticstressanalysistoevaluatestressesandstrainsinanisotropiccompositematerialsismorecomplexthanforisotropicmaterials.However,ithasbeenshownthatthetechniquecanprovidevaluablequalitativeinformationonstressdistri-bution,effectsofsurfacedefectsandcrackgrowthpredictions.Ithasalsobeendemonstratedthat,givenaccuratedetailsofmaterialpropertiesincludingexpan-sioncoefficients,quantitativeresultscanbeobtaineddependinguponthedegreeofanisotropyofthematerial.PriortoundertakingafullSPATEanalysisofthesuspen-sionarmitwasnecessarytodetermineacalibrationfactorforthematerialused.Thiscanbeachievedintwoways,eitherbyloadingadiscofthematerialincompres-sionandcomparingtheSPATEoutputwiththetheoreti-60COMPOSITES.NUMBER1.1994calsolution,orbystraingaugingdirectlyontothecomponentinanareaofevenstressdistribution,therebyobtainingadirectcomparisonwiththeSPATEoutput.Bothmethodswereusedinthiscase,butdirectcalib-rationwithstraingaugescanovercomealotoftheproblems,thusallowingsignificantinformationtobeobtainedfromtheSPATEoutput.PhotoelasticanalysisThemajorityofphotoelasticworkinvestigatingthemac-romechanicalbehaviourofcompositematerialshasbeenundertakenusingphotoelasticcoatingtechniques.Thisisdonetoavoidthecomplexitiesofconstructingaphoto-elasticmodelwithanisotropicpropertiesandthuscon-structingacompositeliketheoriginalwhichwouldloseitstransparencyandcouldnotbeanalysed.However,forcomplexfibrelay-upsthiswouldbetheonlymethodofconductingphotoelasticanalysis,andthussomeresearchhasbeenundertakeninvestigatingtheuseoftheactualcompositesj7-30.Reasonableresultshavebeenobtainedfromsuchanalyses,butwithlimitationsduetotheneces-sityfortransparencywithinthecomposite.However,thecompositecomponentconsideredinthisstudywasmanufacturedfromSMCandthematerialwasassumedtobeisotropic,thussimplifyingthecreationofaphoto-elasticmodel.Athree-dimensionalepoxyresinmodelofthesuspensionarmwasconstructedforthephotoelasticanalysis.Themodelwasthenloadedinarepresentativemanner,withscaled-downloads,andsubjectedtoastressfreezingcycle.Thisinvolvesheatingthemodeluptothemater-ialsglasstransitiontemperature,atwhichpointtheYoungsmoduluschanges,andthemodeldeformsundertheappliedloads.Themodelisthenslowlycooled,avoidinganyuneventemperaturedistributionwhichcouldresultinunwantedthermalstresses.Duringthecoolingcyclethedeformationsandstressesarelockedintothemodel.Whenviewedunderpolarizedlightthethree-dimensionalmodelisajumbleofinterferencefringes.Inordertodeterminebothmagnitudeanddirec-tionoftheprincipalstressesatanypoint,asliceisremovedandobservedunderpolarizedlight.Bycount-ingthefringesthestressesinthemodelcanbecalculatedandconvertedintoactualstressinthecomponent.Thisisdonebymeansofproportionality,betweenthemodelandcomponentmaterials,andtheloadinganddimensio-nalparameters.Thelowersuspensionarmismountedtotherestofthecarviarubbermountingbushes.Investigationswerecarriedoutastothepossibilityofmodellingthesemountingbushes.However,experimentswithsiliconandfoamrubbersshowedthattherequiredscaled-downstiffnessofthebushesduringstressfreezingatelevatedtemperaturescouldnotbemaintained.Thephotoelasticanalysisthusassumedthatthesuspensionarmwassolidlymounted.FINITEELEMENTANALYSISThecompositesuspensionarmwasmodelledusingapproximately1300oftheSTIF45ANSYSsolidele-ments.Thesuspensionarmismountedtothesubframeviarubbermountingbushes;theseweremodelledwithspringelementstorepresentthestiffnessofthebushesandtocreatearealisticloaddistributionthroughoutthecomponent.LoadswereappliedtotheFEmodelviabeamelementsattheballjoint.ThreeloadcaseswereanalysedusingtheANSYSFEsoftware.Thefirstloadcasesimulatedthefullpot-holebrakeloads.Thesecondsimulatedthereducedloadusedinthetestsduetothelimitationsofthetestrig,toenablecomparisonswiththeresultsfromtheexperimentalstraingaugeanalysis.Thesetwoloadcasesusedspringelementstosimulatethestiffnessoftherubbermountingbushes.Thethirdloadcaseagainusedthereducedloadsbutthistimeomittedthespringelements;i.e.,thesuspen-sionarmwasmodelledasbeingsolidlymounted.ThisthirdloadcasewasrequiredtocorrelatewiththeSPATEandphotoelasticanalyses.RESULTSFiniteelementanalysisAnalysisofthesuspensionarmshowedthatthemaxi-mumequivalentstressinthecomponentfortheloadcaseconsideredisveryclosetotheultimatetensilestrengthoftheproposedmaterialforthepot-holeloadingcondition,whichistheworstloadingcondition.Thismeansthatthecomponentmayneedtobemanufacturedfromadiffer-entmaterial,orthatothermaterialsneedtobeposit-ionedinareasofhighstresstostrengthenthecomponentlocally.Duetoconstraintsupontheamountofcomputerdiscspaceavailable,thenumberofelementsusedwithintheFEmodelwasrelativelylowandthusthesizeoftheelementswithintheareaoftheradiiaroundthebodymountingbusheswastoolargetodetectanylargestressconcentrations.Also,thetypesofelementusedaroundtheseareas,duetothegeometryofthecomponent,wereamixtureofbrick,wedgeandtetrahedral.Thelattershapetendstobetoostifftogivegoodresultsandisnotrecommended.Ifmoredetailedresultswererequiredintheseareas,thentheseradiiwouldhavetobemodelledingreaterdetailwithmoreandsmallerelementsintheareasofhighstressgradient.PhotoelasticanalysisTheanalysisofthephotoelasticmodelofthesuspensionarmwasundertakenassumingthatthedirectionsofthemaximumprincipalstresseslayinahorizontalplanethroughthemodelinthedirectionofthefore/aftload.Whilstthisisnotstrictlytrueinpracticeduetolocalgeometryeffectsincertainareas,theassumptiongavesufficientlyaccurateresults.Ifobviousdiscrepancieswerefoundinparticularareasthenitwaspossibletotakeslicesfromdifferentplanes.Maximumstresseswereseentooccurinthevicinityoftheballjointhousingandthebodymounts.Duetotheabilityofphotoelasticanalysistopinpointverysmallareasofhighstress,themaximumstressvaluesgivenbyphotoelasticitytendedtobehigherthanthestraingaugeresults.Forexample,maximumstresslevelsintheinternalradiusoftheleadingbodymountwerefoundtobe43MPacomparedwithaSPATEvalueof26MPa.Thisdifferencecanbeexplainedbyexamin-ingtheslicetakenthroughthephotoelasticmodelwhichshowsthatthemaximumstressonlyoccursatapositionCOMPOSITES.NUMBER1.199461Table1.Stressresults(MPa)forfullloadcon-ditionsPositionStraingaugesFEPhotoelasticBalljointhousing176165176spanning3mmandthatthestressvalueseithersideofthemaximumarearound25MPa.SPATEanalysisTheinitialSPATEscanshowedlargebandsofstressrunningacrossthemountingareasandsomeconfusionastowhethertheseareaswereintensionorcompression.Theproblemwasidentifiedasexcessivemovementinthesuspensionarmbodymountingpositionsduetodistor-tionoftherubberbushesasexperiencedinthestraingaugetests.SPATEisequippedwithamotioncompen-satordeviceifrequired,whichdeflectsthescanningmirrorsinsidethedetectorintimewiththeoscillationsofthetest-piece,therebyeliminatingthemovement.How-ever,inthisparticularcase,thegeometryanddirectionofmovementcouldnotbeeliminatedovertheentireareaatthesametime,andthusitwasnecessarytoremovetherubberbushesandtoreplacethemwithaluminiumones.TheSPATEanalysiswasrepeatedwiththesolidbushesandshowedareasofhightensilestress(26MPa)alongtheleadingedgeandaroundtheinnerradiusoftheleadingbodymountingposition.Unfortunately,noSPATEanalysiscouldbeundertakenattheballjointendofthecomponentasitwasobscuredbythelargeloadingadaptorrequiredtofitthehydraulicactuatorsupplyingthecyclicloading.COMPARISONOFRESULTSItshouldbeclarifiedthatthestressvaluesquotedinthetablesfromthestraingaugeresultswerecalculatedfromtherosettegaugestogiveavalueofmaximumprincipalstress.Thephotoelasticanalysisalsogivesmaximumprincipalstressesunlessthevaluesaretakeninboardofafreeedgeinwhichcasetheyaredifferencesinprincipalstresses(o.-o-,).SPATEanalysisgivesanoutputintheformofthesummationoftheprincipalstresses(or.+a2)whereastheFEoutputcanbeinanyformrequired(inthiscaseyonMises).Duetothegeometryofthecompo-nentandthewayinwhichtheloadswereapplied,thevaluesofor2andcr3werealwayssmall,andthusdirectcomparisonscouldbemadebetweenthedifferentanaly-sismethodswithoutfurtherconversion.Tablelcomparestheresultsobtainedforthemaximumpot-holeloadconditions.Themaximumstressvaluesalloccurattheballjointareaandcorrelateverywell.Theseresultantstressesforthestraingaugesandphotoelasti-citywerecalculatedfromtheresultsobtainedforthereducedload.Themodelstresswasmultipliedbyaload-ingfactorastheratiobetweenthefore/aftandlateralloadingremainedconstantandinthesameproportionasthefullpot-holebrakeloadappliedtothesuspensionarlTI.TheresultsoftheanalysesundertakenwithreducedTable2.Stressresults(MPa)forredTJcedloadswithmountingbushesPositionStraingaugesFEInnerradiusofbody2520mountBalljointhousing4940Table3.Stressresults(MPa)forreducedloadswithoutmountingbushesPositionFESPATEPhotoelasticInnerradiusofbody22mountBalljointhousing302643(25)42(25)loadingbutwiththemountingbushesincludedcanbeseeninTable2.Table3presentstheresultsoftheanalysesundertakenwithreducedloadingandwithoutthemountingbushesbeingused.ThestressgivenbythephotoelasticanalysisisconcentratedataverysmallpointwhereasthestressgivenbyFEanalysisisaveragedoverarelativelylargearea.Inthecaseofthephotoelasticresults,anaverageofthenominalstressesonbothsidesoftheconcen-trationpointisalsoquotedinbracketstogiveafairercomparison.Comparedwiththestraingaugeresults,thevaluesgivenbySPATEareverysimilarforthemaximumstress.IntheorySPATEshouldbemoreeffectivethanstraingaugeswheninvestigatingstressconcentrationeffects,asitismeasuringvaluesoverasmallerareadependinguponitsdistancefromtheobjectduringscanning.InthiscasethemeasurementpointofSPATEwassetatImmdiametercomparedwitha2.5mmgridlengthonthestraingauges.However,inthisinstancethedifferencesweresmallandmovementofthecomponentduringloadcyclinginevi-tablyblurredtheimagetosomeextent,thusthediffer-enceinresolutionwasprobablynegligible.CONCLUSIONSAlltheanalysistechniquesused-i.e.,SPATE,photoelas-tic,finiteelementandstraingaugeanalyses-showedthattheareaofhigheststresswasinthevicinityoftheballjointhousing.Allofthemethodsalsoshowedsigni-ficantstressesintheareasofthebodymountingbushes.However,theFEanalysisdidnotalwaysaccuratelyidentifythesehighstressesduetothesizeoftheelementswithintheseareasbeingtoolarge.IfmoredetailedresultswererequiredfortheseareasfromtheFEanalysis,thentheywouldhavetobemodelledinmoredetailwithagreaternumberofelementsintheareasofhighstressgradient.Theoverallpatternofstressdistributionwasthesameforeachanalysistechnique.Thedifferences62COMPOSITES.NUMBER1.1994

    注意事项

    本文(外文翻译--汽车复合材料悬架摆臂的实验分析 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!