会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文资料--Effects of key parameters on energy distribution and kinetic.pdf

  • 资源星级:
  • 资源大小:962.13KB   全文页数:15页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文资料--Effects of key parameters on energy distribution and kinetic.pdf

JOURNALOFSOUNDANDVIBRATIONJournalofSoundandVibration3082007548–562amongtheenergystateaftercollisionbetweenabarandabeam,therestitutionstateandthesoundgeneratedwhenatestofaweightandreportedintermittenttypecollisionwithinashorttime2.WiththeadvancementofARTICLEINPRESSwww.elsevier.com/locate/jsvi0022460X/seefrontmatterr2007ElsevierLtd.Allrightsreserved.doi10.1016/j.jsv.2007.05.008C3Correspondingauthor.Emailaddressnarakeyaki.cc.utokai.ac.jpT.Narabayashi.beamandabarcollide.Therefore,itisimportanttoanalyticallystudytheeffectofkeyparametersonvariousenergystates.Thus,asourprincipalresult,thecomplicatedmotionofasysteminvolvinganintermittentcollisionphenomenonnamely,anelasticbarandanelasticbeamsupportedatbothends,wasclarifiedtheoreticallyandexperimentally.r2007ElsevierLtd.Allrightsreserved.1.IntroductionWhenabarcollidesperpendicularlywithabeam,longitudinalvibrationisgeneratedinthebar,whilelateralvibrationisgeneratedinthebeam.Boththebarandbeamhaveadefiniteelasticpropertyhowever,collisionphenomenabetweenabarandabeamareverycomplicated,sincetheirelasticpropertiesinfluenceeachother.Regardingcollision,particularlylateralcollision,ofabeamhavingatypicalsimplestructure,Timoshenkoreportedanalyticalresultsforafallingsteelballmanyyearsago1.MajimaandNishidacarriedoutadropEffectsofkeyparametersonenergydistributionandkineticcharacteristicsincollisionofbarandbeamT.Narabayashia,C3,KazuoShibaikeb,A.Ishizakaa,K.OzakicaDepartmentofPrecisionEngineering,SchoolofEngineering,TokaiUniversity,1117,Kitakaname,Hiratsukasi,Kanagawa,JapanbTOSHIBATECGotanda2172,Shinagawaku,Tokyo,JapancDepartmentofPrimemoverEngineering,SchoolofEngineering,TokaiUniversity,1117,Kitakaname,Hiratsukasi,Kanagawa,JapanAccepted3May2007ThepeerreviewofthisarticlewasorganisedbytheGuestEditorAvailableonline10July2007AbstractElasticcollisionproblemsarethefoundationsofallcollisionproblems,andabarandabeamcanrepresentatypicalandsimplestructure.However,theelasticcollisionofabarandabeamisacomplicatedphenomenon.Thepurposeofthisresearchistoclarifytherelationshipbetweentheprincipalparameterandthekineticcharacteristicsthatinfluencethiscomplicatedelasticcollisionphenomenon,andtoexplaintheseonthebasisofanimpactforcewaveform,theapparentcoefficientofrestitution,andenergydistribution.Weemployedananalysismethodinwhichtheimpactforceassumesanexponentialfunctionforthebasicequationoftheonedimensionalelasticvibrationcorrespondingtothelongitudinalvibrationofthebarandthelateralvibrationofthebeam,andinwhichtheforcesatisfiestheconditionofcontinuityofthedisplacement.Intheexperiment,assumingflatsurfacecontact,wedirectlydetectedcollisionphenomenonelectricallyusingPZTpastedontotheendsurfaceofthecollisionbar.Onthebasisofthisstudy,thekeyparameterintheabovementionedcollisionphenomenonisclarified,andanenergydistributionsituationandtheinfluenceofeachparametercannowbeconsideredforarbitrarycombinationsofthebarandbeam.Furthermore,itisassumedthatthereisacorrelationmeasurementinstruments,thenumberofreportsonmeasurementmethodsusingstraingaugesandpiezoelectricelementsPZTshasbeenincreasing3–5.However,detaileddiscussionhasnotbeencarriedoutonintermittenttypecollisionbetweenabarandabeam.AttheATEM99andICEM12InternationalConference,theauthorsdemonstratedandreportedtheeffectivenessof1theanalyticalmethodbasedonaonedimensionalfundamentalequationoncollisionphenomenabetweenabarandabeamtosatisfytheconditionofcontinuityand2anexperimentalmethodofobservingthecollisionphenomena6andrestitutioncharacteristics7intermsofelectricalcharacteristics.Inthisanalyticalmethod,rotatoryinertiaandsheardeformationofthebeamaredisregardedforsimplicity.Inaddition,assumingimpactforcetobeanexponentialfunctionoftime8,9,theequationsaresolvedsuchthattheconditionofcontinuitybetweenthebarandthebeamaresatisfied,inordertoclarifythecomplicatedmotionphenomenaduringcollision.Inthispaper,abothendssupportedbeam,whichiseasilyrealizedasasupportingcondition,isused,andPZTisARTICLEINPRESST.Narabayashietal./JournalofSoundandVibration3082007548–5625492.2.EquationofmotionandelasticdisplacementofbarincollisionImpactforcePtisappliedtotheendofthebarandthebarissubjectedtoelasticdeformation.Assumingtheelasticdeformationofthebarendtobeu1t,theequationofmotionisq2u1ðtÞqt2¼c21q2u1ðtÞqx2.2l2−l1,00,l2/20,−l2/20,00,lpyx2.1.EquationofmotionforcenterofgravityofbarAssumingimpactforcePtisappliedtotheendofthebarintheleftwarddirectionduetocollision,thecenterofgravityofthebarUtisobtainedbyintegratingundertheinitialconditionofU¼0anddU/dt¼Vatt¼0r1l1A1d2UðtÞdt2¼C0PðtÞ.1pastedontotheendsurfaceofthecollidingbarandthecollisionphenomenaareobservedintermsofelectricalcharacteristics.Acomparativestudywasalsocarriedoutonthekeyparametersintheanalysisandexperiment,whilechangingcollisionposition.Sincetheexperimentalandtheoreticalresultsgenerallywereingoodagreement,weconcludedthatbothourtheoryandexperimentalmethodareeffectiveevenundertheconditionthatcollisionpositionchanges.Furthermore,thechangesofinthekineticcharacteristicsofthebarandbeamarediscussedfromtheviewpointofchangesincollisionposition,restitutioncharacteristicsandenergydistribution.2.SettingproblemandoutlineoffundamentalequationsforanalysisAcaseinwhichanelasticbarlengthl1,crosssectionalareaA1,densityr1,longitudinalelasticcoefficientE1,velocityoflongitudinalwavec1collidedperpendicularlywithanelasticbeaml2,A2,r2,E2andc2atthecenterofabeamoratapositionlpfromthecenterinthesupportedenddirection,ataninitialvelocityofV,isconsideredFig.1.Thetimeatwhichthebarcollideswiththebeamisassumedtobetheoriginoftimet.Fig.1.Barandbeam.ARTICLEINPRESST.Narabayashietal./JournalofSoundandVibration3082007548–562550Theboundaryconditionsareexpressedasatx¼0,E1A1qu1ðtÞqx¼C0PðtÞð0ptpTÞ0ðTotÞ3atx¼C0l1,qu1ðtÞqx¼0.4Theinitialconditionisgivenbyu1ðtÞ¼0qu1ðtÞqt¼0.5Theelasticdeformationofthebarendcanbedeterminedbyexpandingtheequationtoaninfiniteseriesusingthenaturalangularfrequencyandtheeigenfunctionofabothendsfreebar.Thenaturalangularfrequencyandeigenfunctionofabothendsfreebararen1n¼npc1l1Un¼ffiffiffiffiffiffiffiffiffi2l1pcosðnpxl1Þ.6Theelasticdeformationofthebarendisgivenbyu1ðtÞ¼C02r1A1l1X1n¼11n1nZt0PðxÞsinn1nðtC0xÞdx7consideringthedisplacementatx¼0.here,nisthemodenumber.2.3.EquationofmotionanddeflectiondisplacementofbeamattimeofcollisionTheequationofmotionofthebeamisexpressedbyq2u2ðtÞqt2þE2I2r2A2q4u2ðtÞqy4¼0,8whereI2isthemomentofinertiaofareaandu2tthedeflectiondisplacementofthebeam.ThedeflectiondisplacementofthebeamcanbecalculatedbyexpandingtheequationtoaninfiniteseriesusingeigenfunctionWvyforbothendssupportedbeamu2ðtÞ¼1r2A2X1n¼11n2nWnðlrÞ2Zt0PðzÞsinn2nðtC0zÞdz.9Here,assumingthefirstmodenaturalangularfrequencyofthebothendssupportedbeamisn21,n2n¼n2n21holds.Underthiscondition,theeigenfunctionisexpressedasWnðlpÞ¼ffiffiffiffi2l2rsinnplpl2þ12C18C1910andthedeflectiondisplacementofthebeamatthetimeofcollisionisobtained.Here,lp/l2isthecollisionpositionratio,i.e.,theratioofthedistancebetweenthebeamcenterandthecollisionpositiontothelengthbetweenthesupportedends.2.4.ConditionofcontinuityandapparentcoefficientofrestitutionAcaseinwhichabarcollidedwithabothendssupportedbeamatapositionlpfromthecenterofthebeamisconsidered.ThedisplacementofthebarendisthesumofthedisplacementofthecenterofgravityUtobtainedbyintegratingEq.1andtheelasticdisplacementofthebarendu1t,andisgivenbyUðtÞþu1ðtÞ.11Next,thedisplacementofthebeamatthecollisionposition,u2t,whentheimpactforcePtisappliedtothecollisionposition,isassumedtobeequaltoEq.11,sincethedisplacementofthebarendandthatofthebeamatthecollisionpositionareequalduringcollision,andholdsUðtÞþu1ðtÞ¼u2ðtÞ.12AssumingthedisplacementofthecenterofgravityofthebarbeforecollisiontobeU0andthataddedaftercollisiontobeU1,theaboveequationisexpressedEq.13ARTICLEINPRESST.Narabayashietal./JournalofSoundandVibration3082007548–562551U0¼Vt¼u2ðtÞC0ðU1þu1Þ.13BecausethelefthandsideofEq.13changeslinearlywithtime,therighthandsideshouldalsochangesimilarly.TheimpactforcePtisapproximatedusingthefollowingequationsuchthattherighthandsideofEq.13changesaslinearlyaspossiblewithtime,asshowninFig.2b,andbothP1andm1areadjustedsothatthecontinuityconditionofdisplacementissatisfiedPðtÞ¼P1eC0m1t.14OnceEq.14isdetermined,boththeelasticdeformationgeneratedinthebarandthedeflectiondisplacementgeneratedatthecollisionpositionofthebeamcanbeobtainedasinfiniteseriesusingtheeigenfunctionsofthebarandbeam.Here,theequationsofdisplacementofthebarandbeamareobtainedasafunctionoft,inwhichthemassratioandnaturalfrequencyratioofthebarandbeamareusedasparametersandm1asanunknown.Byconsideringthecollisionpositionratiocontainedintheeigenfunctionofthebeam,itbecomespossibletocalculatethemotionofthebarandthebeam.Basedontheequationforthedistancebetweenthebarandthebeam¼u2ðtÞC0fUðtÞþu1ðtÞg40,itisfoundthatthebarendseparatesfromthebeam.Collisionsceaseatthispoint,andthebarandbeamwillnotcollideagainunlessthedistancebetweenthetwobecomes0beforeapproximately3/4oftheperiodofthebeam.Inthiscase,thebarandthebeamcollideonlyonce.Incontrast,whentheycollidentimes,theycomeintocontactagainattimeTnatwhichthedistancebetweenthebarandthebeamis0orless.AssuminganimpactforceexpressedbyPðtÞ¼PneC0mnðtC0TnÞ15isappliedtothebar,Pnandmnaredeterminedsuchthattheconditionofcontinuityissatisfied,andthedisplacementiscalculatedforthenthorlatercollisions.Bythisprocedure,variousimpactforcepatternsareobtainedundervariouscombinationsofthethreeparameters,i.e.,1thenaturalfrequencyratioofthebartothebeamn11/n21,2themassratioofthebartothebeamm1/m21and2refertothebarandbeam,respectively,and3thecollisionpositionratiolp/l2wherelpthedistancebetweenthebeamcenterandthecollisionpositionandl2thelengthbetweenthesupportedends.Whenthebarandthebeamcollidentimes,b1n11tdRightsideofeq.13PtP1e−afii98391tTimeP1ImpactForce0T0Leftsideofeq.1302πFig.2.Approximationofimpactforcebyadjustingm1/n11andcontinuityconditionofdisplacement8.

注意事项

本文(外文资料--Effects of key parameters on energy distribution and kinetic.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5