会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > PDF文档下载

外文资料--封口机器人.pdf

  • 资源星级:
  • 资源大小:587.75KB   全文页数:6页
  • 资源格式: PDF        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文资料--封口机器人.pdf

InternationalJournalofEngineeringandTechnologyVolume2No.10,October,2012ISSN20493444©2012–IJETPublicationsUK.Allrightsreserved.1717AnInverseKinematicAnalysisofaRoboticSealerAkinolaA.Adeniyi1,AbubakarMohammed2,AladeniyiKehinde31DepartmentofMechanicalEngineering,UniversityofIlorin,Ilorin,Nigeria2DepartmentofMechanicalEngineering,FederalUniversityofTechnology,Minna,Nigeria3DepartmentofScienceLaboratoryTechnology,RufusGiwaPolytechnic,Owo,NigeriaABSTRACTAplanarroboticsealingorbrandstampingmachineispresentedforanautomatedfactoryline.Theappropriatetimetosealortostampanobjectisbasicallydeterminedbyamotorcontrollerwhichreliescriticallyonwhetherornottheobjectisinthebestposition.Theextentofprotractionandretractionofthepistonheadislargelydictatedbyaninfraredsensor.Giventheextenttoprotractorretractthepistonhead,theangulardisplacementsofthelinkrequiredaredeterminedusingtheInverseKinematicIKtechniques.Theinertiaandgravityeffectsofthelinkshavebeenignoredtoreducethecomplexityoftheequationsandtodemonstratethetechnique.KeywordsForwardKinematics,InverseKinematics,Robotics,Sealer.1.INTRODUCTIONAnautomatedfactoryusesanumberofmechanicallinkselectronicallycontrolledtoachievetasks.Thebenefitsoffactoryautomationaremanyandofstrategicimportancetomanagement1.Standardmechanicallinksareusuallypoweredwithelectricalmotors,pneumaticsystemsorsolenoids.Inamanuallyoperatedmachine,thehumanperformsvisualchecksandotherstandardchecksthataretobereplicatedbyautomation.Theinterestofthisworkiscenteredonahypotheticalsealingmachinewhichisusedforstampingsomesignaturesandlogosasdoneinabrandingfactoryline.Inversekinematicanalysisisappliedtoenableusdetermineangulardisplacementsofthelink.Kinematicsinvolvesthestudyofmotionwithoutconsiderationfortheactuatingforces.InverseKinematicsIKisamethodfordeterminingthejointanglesanddesiredpositionoftheendeffectorsgivenadesiredgoaltoreachbytheendeffectors1.AfeasibilityofusingaPIDcontrollerwasstudiedbyNagchaudhuri2foraslidercrankmechanismbutwithoutanoffset.Tolanietal3reviewedandgroupedthetechniquesofsolvinginversekinematicsproblemsintoseven.ThetechniquesaretheNewtonRaphsonsmethodanditsothervariants.TherearetheJacobianandthevariantswithpseudoinverseotherwiseknownastheMoorePenroseinverseforsquareornonsquareJacobian.Othermethodsarethecontroltheorybasedandtheoptimisationtechniques.Anumberofauthors1,47haveproposedalgorithmsforsolvingIKproblemswhichincludebutnotlimitedtoNeuralNetworkalgorithm,CyclicCoordinateDescentclosureandInexactstrategy,butlikeeveryothertechniquesforagivenproblemthechoiceofmethoddependsonthespecificsoftheproblem.Buss8discussedtheJacobiantranspose,theMoorePenroseandtheDampedLeastSquarestechniques.Intermsofcomputationalcost,theJacobiantransposemethodisthecheapbutcanperformpoorlybasedontherobotconfigurations.InthisworktheJacobiantransposetechniqueillperformedbuttheJacobianInversetechniqueissuitableandmoresoitisasimple2Dplanarrepresentationoftheproblemwithonly4degreesoffreedom.2.OPERATIONSOFTHEROBOTICLINKFig.1showstheschematicdiagramoftheroboticsealingsystem.Thecappingorstampingisachievedwiththepistonorramhead,P.Cistheconveyorline.Thecapsorthebrandingheadsareplacedinpositionandsensedbyaninfraredsensor,S.Theinstructiontosealorbrandisdependentonfeedbackfromthesensor.Iftheitemtobebranded,cappedorstampedisoutofplaceattheinstancewhentheramheadwasgoingtotouch,thesensorfeedbackwillbetoretractthehead.Itcanalsobetonotgotoofar.Therecanbearangeoffeedbacktothemotorcontroller,M.Thiskindofcontrolsystemissimilartowhatahumanoperatorwoulddoifitweremanuallyoperated.Theuseofsensorsandfastrespondingmotorcontrollerwillmakethishypotheticalmachineaveryusefultoolinafactoryperformingthiskindofmundanetask.ThisfactorysublineisasimpleslidercrankmechanismwithactuatorarmA.Inclearerterms,theinstructionswouldbetopressthepistonramtosealifthecapandthecontainerareinlinetoreversethepistonincaseofajamtonotpressthepistonramifeitherthecontainerorthecapisabsenttoInternationalJournalofEngineeringandTechnologyIJET–Volume2No.10,October,2012ISSN20493444©2012–IJETPublicationsUK.Allrightsreserved.1718pressfurtheriftheseallengthisshorterthanexpectedasmaybecausedbywearandtear.Thisclearlyshowsthatthepistondeterminestheangleofthelinkorthedirectionoractionofthemotor.Thisisaninversekinematicsproblem.Thesensorfeedbackpartismuchofacontrolengineeringproblem,notconsideredinthispaper.Fig.1Theroboticsealingrigschematic3.ANALYSISFig.2isarepresentationoftheslidercrankmechanism.Thereisanoffset,f,ofthepistonaxisfromthemotoraxis,O1.O2istheaxisofthepistonwithmovingcoordinatesx,y.ThemotorrotatesclockwiseorcounterclockwiseaboutO1.IfthecrankmakesdisplacementΔsonthepistonplane,itisequivalenttoamotionofΔexandΔey.Thismotioniscausedbythecrankmakinganangularmotionclockwiseorcounterclockwise,Δ.Theanglebetweentheconnectingrodandcrankmakesanangulardisplacementof,Δ.ThisalsomeanstheangularshiftofΔismadebetweentheconnectingrodandthepistonorramplane.Fig.2TheoffsetslidercrankCartesiancoordinateworldInacomputergameapplicationforthese,theangleswouldbeexplicitlyrequiredsothatthelinksdonotphysicallydisjointforaphysicallyconnectedlink,themotorcontrolleronlywouldneedtheinstructiontomoveonlythecrank.3.1TheWorldCartesiancoordinatesystemisadopted.Clockwiseispositiveandmotiontorightandupwardsarepositive.TheTopDeadCentreTDCisattainedwhenthecrank,radiusr,andtheconnectingrod,lengthl,areinline.Thisisattainedwhen.fmisthemaximumvariableoffsetbasedonthegeometry.TheBottomDeadCentreBDCisreachedwhen.TheTDCandBDCwiththevariableoffsetareshowninFig.3.Fig.3TheTopandBottomDeadcentreThepistonhasbeenconstrainedtomoveonlyinplanardirection,onthevectorof.Inthiswork,thedirectionvectoris,makingtheplaneat45otothehorizontal.3.2TheForwardKinematicsThedisplacementcausedbythemotormovingclockwisefromthepositioninFig.2isrepresentedinequation1.Wheresubscriptsi,farerespectivelymeaninitialandfinalvalues.Thepositionatfisreachedinrealitysmoothlyforarotatingcrank,butthesmoothnesscanbereachedinfineincrementalsteps,inthenumericalapproach.Attheendofthesteppedincrements,thefinaldisplacementtothegoalisseenasafunctionofangularparametersgivenas1Thelineardependenceoftheangles,inthisproblem,canhelptoreducethenumberofdegreesoffreedomtocomputeinequation1.Itcanbeshownthat,therebymaking.Usingtrigonometry,theinstantaneousinitial,arbitrary,positionofthepistoninFig.2isgivenbyEquation2.23TheJacobianmatrixforisgiveninequation4andsimplifiedtoequation5.InternationalJournalofEngineeringandTechnologyIJET–Volume2No.10,October,2012ISSN20493444©2012–IJETPublicationsUK.Allrightsreserved.1719J4J5Computingthenewpistonpositioninvolvessolvingequation1.ThenewcoordinateofthepistonbythefirsttermofexpansionoftheTaylorseriescanbeshowntobegiveninequation6.isthevectoroftherobotangulardisplacementsfortherelatedlinks.Mathematically,.Here,wehave.Thereforethecurrentpositionofthepistonorthepressingheadisapproximatelygiveninequation6.Itshouldbenotedthatcanbemeasuredfromthehorizontaltofurtherreducetheequationsets,thisisreferredtoaselsewhereinthispaper.J63.3InverseKinematicsTheproblemisnotthatofsolvingforXfgivenXiandbutitisthatofsolvingforgivenXi,andthedesiredXf.Thisisiterativelyimplementedsuchthatthetargetdisplacementofthepistonisgivenas.Thisisavectorofthepistondisplacementandcanberepresentedas.Sincethisisaplanarproblemwithnodisplacementsintheotherdirections,itreducestoa.Tosmoothenthepossiblejerkorjumpyeffect,thiscanbesteppedusingafactorofwhichcanbeselectedintuitivelybasedontheratioofrtoLbutandJistheinverseofJacobianmatrix.Thealgorithmchecksifthetargethasbeenreachedornot.Iterationisstoppedwhenthesolutioniswithinapredeterminedleveloferrororamaximumnumberofiterations.Thechoiceoftheselimitingvaluesshoulddependontheresponsetimeacceptable.Thiscanbecriticalforarealtimeapplication.J74.RESULTANDDISCUSSIONSConsideracurrentorientationoftheroboticarmatanyarbitrarypositionwiththepistonheadatapositionP1.SupposethesensorsystemrequiresthepistontomovetoatargetnewpositionP2.Thesimulationisdoneforseveralarbitrarystartingpositionsofthecrankandresultsaresimilarforreachabletargets.Supposingthecrankangleisatacurrentorientationwithcrankangleof5o,andthereisaninstructionfromthesensortoretractthepistonramheadby0.1timesthecrankarmlength.Thesimulationinstructsthecrankproceedstocounterclockwiseby15.58o,thiscorrespondstoanincreaseofto19.26oandcorrespondingly,reducesto86.32o.Fig.4showsthesimulationprogressofthepistonheadfromacurrentpositionP1tothenewtargetP2andthenumberofiterationsdone.Fig.4CrankPositionandIterationwiththeJacobianInverseMatrixThetechniqueusedistheJacobianinversetechnique.TheJacobiantransposetechniqueisnotpredictableforthesameproblemandinthiscase,thesolutionsettlestoalocalminimumforonlyoneoftheanglesbuttheconvergencerateisfaster,seeFig.5.Fig.5CrankPositionsusingtheInverseandTransposeoftheJacobianMatrixIfthereisarequesttoaphysicallyunreachabletarget,suchastoamorethantheTDCorBDClocations,P3,thesimulationrunsandstopsafterthemaximumnumberofiterationsoriftheJacobianMatrixbecomesuninvertible,Fig.6.010203040506070809010020100CrankAnglePercenttoTargetCrankPositions0500010000NumberofIterationsInternationalJournalofEngineeringandTechnologyIJET–Volume2No.10,October,2012ISSN20493444©2012–IJETPublicationsUK.Allrightsreserved.1720Fig.6UnreachableTargetsituation5.CONCLUSIONThispaperisfocusedontheapplicationoftheInverseKinematicstechniquetotheanalysisofaroboticlink,suchasobtainedinasealerofanautomatedfactory,withoutconsiderationfortheeffectsofinertiaeffects.TheJacobianinversetechnique,asmentionedinliteratures,ismorereliableinthisapplication.TheJacobiantransposeapproachisnotreliable.Thispaperhasdemonstratedtheapplicationoftheinversekinematicstoasimpleroboticsealerthepistonisinstructedtoretractby0.1unitsasatestcase.ThenewcrankanglewasfoundmoreaccuratelywiththeJacobianInversetechniquebetterthattheJacobianTransposetechnique.Theproblemcanbeextendedtoincludethedynamicsforpossibleselectionoftheoptimaldrivingtorqueorelectricmotorselectionforthedrivingparts.REFERENCES1S.TejomurtulaandS.Kak,InverseKinematicsinroboticsusingneuralnetworks,InformationSciences,vol.116,pp.147164,1999.2A.Nagchaudhuri,MechantronicRedesignofSliderCrankMechanism,inASMEInternationalMechnicalEngineeringCongressExpositionIMECE2002,NewOrleans,Louisiana,2002.3D.Tolani,A.Goswami,andN.I.Badler,RealTimeInverseKinematicsTechniquesforAnthromorphicLimbs,GraphicalModels,vol.62,pp.353388,2000.4S.K.SahaandW.O.Schiehlen,RecursiveKinematicsandDynamicsforParallelStructuredClosedLoopmultibodySystems,MechanicsofStructuresandMachines,vol.29,pp.143175,2007.5X.Wang,Abehaviorbasedinversekinematicsalgorithmtopredictarmprehensionposturesforcomputeraidedergonomicevaluation,JournalofBiomechanics,vol.32,pp.453460,1999.6A.C.Nearchou,Solvingtheinversekinematicsproblemofredundantrobotsoperatingincomplexenvironmentsviaamodifiedgeneticalgorithm,MechanismandMachineTheory,vol.33,pp.273292,1998.7M.J.D.Powell,SomeGlobalConvergencePropertiesofavariablemetricAlgorithmforMinimizationwithoutExactlinesearches,inSymposiuminAppliedMathematicsoftheAmericanMathematicalSocietyandtheSocietyforIndustrialandAppliedMathematics,NewYorkCity,1976.8S.R.Buss,IntroductiontoInverseKinematicswithJocobianTranspose,PseudoinverseandDampedLeastSquaremethods,UniversityofCalifornia,SanDiego2009.010020030040050060070080090010001000100CrankAnglePercenttoTargetCrankPositions05001000NumberofIterations

注意事项

本文(外文资料--封口机器人.pdf)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5