欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--在内部复杂机械荷载下的负荷传感系统动态特性 英文版【优秀】.pdf

    • 资源ID:97810       资源大小:511.04KB        全文页数:6页
    • 资源格式: PDF        下载积分:10积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--在内部复杂机械荷载下的负荷传感系统动态特性 英文版【优秀】.pdf

    BirgittaLanttoPetterKrusJan-OvePalmbergDivisionofFluidPowerTechnology,DepartmentofMechanicalEngineering,LinkdpingUniversity,S-58183Linkoping,SwedenDynamicPropertiesofLoad-SensingSystemsWithInteractingComplexMechanicalLoadsAload-sensingfluidpowersystemisafeedbacksystemwithseveraltypesofinstabilitymodes.Thispaperdealswithoneofthem,whereloadinteractionthroughamechanicalstructureandthefluidpowersystemmaycauseinstability,e.g.inalorrycrane.Criteriaforinstabilityareevaluated.Thispaperalsoproposessomemethodshowtoavoidthistypeofinstability.IntroductionThehigh-energysavingpotentialofload-sensingsystemsisaspecialadvantage,especiallywhentheconfigurationincludesavariablepump.Controllabilityofsuchsystemsmaybeenhancedbypressure-compensatedcontrolvalvessinceinteractionbetweentheactivatedloadscanbeavoided(seeFig.1).However,thistypeofsystemisafeedbacksystemand,unfortunately,alsoextremelyundamped.Therefore,itisnotunlikelythatinstabilitytakesplaceinsuchsystems.Generally,themostriskyfeedbackisthepumppressureandhighestloadpressurefeedbackscontrollingthepumpregulatorwhichcouldleadtotheso-calledpumpandpump-loadinstabilities,seeKrus(1989).Thereisalsoariskofinstabilityattheloadifafeedbackcomponentsuchasanover-centrevalvecontrolstheactuator.AthirdtypeofinstabilityisdiscussedinLantto(1992).Whenseveralactuatorscontrolthesamemechanicalstructure,e.g.acranearm,theyinteractthroughthestructureandthefluidpowersystem.Then,afeedbackcouldbecreatedasinFig.2whereamovementoftheactuatorwiththelowestloadchangesthehighestloadpressureandthereforetheload-sensingpumppressurewhichchangestheflowtothelowestload.Suchdestabilizinginteractionhasearlierbeenanalyzedbye.g.Rama-chandran(1982)andPannala(1985).Thispapergivesadeeperdiscussionaboutthisthirdtypeofinstabilityrisk,mainlyfoundinload-sensingsystems.ThestabilityanalysisinthispaperisbasedonKrus(1988),Krus(1989),Palmbergetal.(1985),andLantto(1992)andconcernsmainlysystemswithnoncompensatedcontrolvalves.Onlysystemswithanunsaturatedload-sensingpumparediscussedhere.Moreover,onlypositivemassandinertialoadsareconsidered.InstabilityBecauseofLoadInteractionThroughtheMechanicalStructureInthissection,wewillshowhowinstabilitycanbeevaluatedforastructurecontrolledbyanidealload-sensingsystem.ThisContributedbytheDynamicSystemsandControlDivisionforpublicationintheJOURNALOFDYNAMICSYSTEMS,MEASUREMENT,ANDCONTROL.ManuscriptreceivedbytheDynamicSystemsandControlDivisionMarch25,1991;revisedmanuscriptreceivedJuly1992.AssociateTechnicalEditor:A.Akers.sectionwillalsodiscusswhenanormallorrycranereachesinstability.Sincethistypeofinstabilityisdependentonboththefluidpowersystemandthegeometryofthemechanicalstructure,thedesignofthestructureandthefluidpowersystemwillbediscussed.Theanalysiswillshowthatthisinstabilitygenerallymayoccurif1)apositive(ornegative)movementofthelowestloadwillcauseanegative(apositive,respectively)movementofthehighestloadthroughthemechanicalstructureand2)ifafeedbackcomponentcontrolsthesystemsothatanincreaseofthehighestloadpressurewillcauseanincreaseoftheloadflowtothelowestloadthroughthefluidpowersystem.InstabilityinaLoad-SensingSystem.ThesimplestructureinFig.3,controlledbytwocylindersinaload-sensingsystemwithnoncompensatedcontrolvalves,hasthefollowingequa-Fig.1Load-sensingsystemincludingcontrolvalveswithconventionalpressurecompensatorspools/.vHighestloadLoadflowfrLowestload4Loadsensingpressure4Fig.2FeedbackthroughthemechanicalstructureJournalofDynamicSystems,Measurement,andControlSEPTEMBER1993,Vol.115/525Copyright©1993byASMEDownloaded22Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmFig.3Load-sensingsystemwithloadinteractionthroughasimplifiedmechanicalstructuretionsofmotion,describingthesmallmovementsofthetwopistonsinthefrequencydomain:s2/AXLjAXL2,00B2AXi2,ALl£J>Ll-AolUPolAL2APL2-A02AP0%(1)TheyformthetransferfunctionsGmAandGh2ofthemechanicalloadinAppendixwhereM=ml+m2,Bi=bi,M2=m2andB2=b2,whileMfi1=MKi2=m2formsthetransferfunctionsofthemechanicalcouplingasG«,=GK2=-AL1AL2m2sALxALlm2s(2)(3)TheseequationsandtheAppendixformtheblockdiagraminFig.4whichdescribesageneralload-sensingsystemwithloadinteractionthroughthemechanicalstructure(blocksGKilandGKi2)andthefluidpowersystem.rf%FKE>Fig.4Blockdiagramofaload-sensingsystemwithloadinteractionThenextstepistoanalyzethisfeedbacksystembyreducingtheblockdiagramintoclosed-looptransferfunctionswheretheoutputsignalsAXLiandAXL,2arefunctionsofAXViiandAA,seeLantto(1992).Then,thecharacteristicequationisfoundas1H,iiG,ni-+1+G;GmlHmGn+FLSCGmxGvHL2Gmi"r"t+C/j.2j/-"pumpGm2G+FLSGn1HLGKj1HL2GK1-+G+G.-Hm-HmGPl+FLsGpGmiGGmiHmH,l+Hsp(Gn+G2+Gp)=0(4)(5)AB,bCdPDLF(s)G(s)H(s)JkKc=area,m2=viscousdampingcoefficientofactuator,Ns/m=volumecapacitance(=V7/3e),m3/Pa=volumetricgradientofpumpdisplacement,mVrev=motor(load)displacement,mVrev=filtertransferfunction=transferfunctionwhereoutputisnormallyflowwhileinputispressure.Theflowisoutputandvalvedisplacementinputwhenthesubscriptisx.=transferfunctionwhereoutputispressurewhileinputisflow.=inertia,kgm=springcoefficient,N/m=flow-pressurecoeff.oforifice(=dq/d(pm-POM),m3/(sPa)KqL,lM,mnPqsVXHe6APe01=flowgainofvalveorifice(=3#/dxvalve),m2/s=length,m=mass,kg=pumpspeed,rev/s=pressure,Pa=flow,m3/s=Laplacetransformoperator,rad/s=volume,m3=displacement,m=effectivebulkmodulus,Pa=dampingratio=smallvariationinalinearizedvariable.=density,kg/m3=angle,rad=frequency,subscriptindicatesabreakfrequency,rad/s.CapitalletterofavariablemayindicateaLaplace-transformedvariable.SubscriptLLSm0PregTVK12J=meter-insideofcylinderload-sensinglinemechanicalloadmeter-outsideofcylinderpumppumpregulatorpump(supply)volumetankcontrolvalveorvalvepackageloadwhichcouplestheactuatorsthroughthestructurethehighestloadthesecondhighestloadshortnoteinsubscript,e.g.,&>L,Imeansu526/Vol.115,SEPTEMBER1993TransactionsoftheASMEDownloaded22Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmAfirstglanceatthisequationusingthefollowingsimplifications:9Aninfinitelyfastpumppressurecontrolwithoutleakagemodelledasaninductance,Gp=l/(LpS)oowhichleadsto#pumP=1/Gp,andconsequentlyAPsAPLii.9Noorificeintheload-sensingline,FLS1.8Constantpressureonthemeter-outsideofthepistons,AP0il=0otAoA=0leadingtoG,A«Gm>1respectivelyAP0i20orAOi20leadingtoG,2=Gm,2.8OnlymassloadswithoutspringforcesandwiththeonlyviscousfrictionappearinginthecylindersareanalyzedwhichleadtoGKAALAALa/(MK%2s)andGK%1=ALAAL<1/MKAS).8NodynamicsinthecontrolvalvesleadingtoGAjjG.jsandKCiVy2,respectively.9B2Kc,v,i«A2Ltlofthelowestload.givesthefollowingcharacteristicequationwhere=ALAAL,2/(MKACLA)and<4,i=ALAALa/(MK:2CL,2).2+-5+12<°i228,Wi2L2Kfn+A2LlM2AL2MKAs+Af,J7M*KcnBAl,_=0(6)Findingtherootstothisequationwillshowifstabilityisachievedornot.Thecharacteristicequationmayberewrittenass26,4,-T+-s+1)=0wB(7)Identificationofthes-termsgiveswAando>B.Assumethat:«+(8)25il«L,KcBx!j-«-1Then,uAandwfiwillbeachievedfromEqs.(6)and(7)as(9)uA<2(10),/WiV1+v«w2.,2-.2,wawi2»If,/Wi«VV1-/1W(<*L2MK1MnIC2J+WJMM2MKlMK2MXM2(11)whereco>i<(j)iil<coflandco<uii2<WB.Equations(6)and(7)givethedampingratios8,4andbB.Negativedampingratiosshowoninstability.Here,itispossibletoshowthat5BwillbepositivesincethemassmatrixinEq.(1)mustbepositivesemidefiniteorMKlMK2<MlM2(12)motorspeed9L(rad/s)15motorspeed0.(rad/s)ISm45cm3/rovTime(s)10t»A/(2ic)*1.52Hz&J(SK)-10.0Hz5.=-0.01-55cm/iw5Time(s)10oiA/(2*).1.70Hzeg/fa)-11.0HzS.-0.005Fig.5Timesimulationsofaload-sensingsystemwithtwointeracting,fixeddisplacementmotorswiththedisplacementsDti1(highestload)andDL2whenDt|1<DL%2andDL|1>DL2.Thehighestloadstartsat0s,theotherat5sec.KCnM2-MKlALli-40>LhWA2iA12UBKCnM,ALl-A72M-2-21!£dl2WB(13)TheequationshowsonstabilityonlywhenM212"L22ALlAL2BiCLjKc2UA20>LXB2CL2Kr.2">A2(14)Assumingnoviscousfrictioninthecylinder,B2=0,andnt=0inthesimplifiedcaseinFig.3,whereMKA=M2m2,leadsustothefollowingcrudecriterionsincewAwLAando>Boo:Ifinstabilityshalloccurinthesystem,thepistonareaAL,2ofthelowestloadmustbelargerthanthepistonareaALAofthehighestload.ThismeansthatforthemechanicalstructureinFig.3,instabilitywillalwaysoccursincetheactuatorwiththehighestpressurehasthesmallestpistonarea,seeFig.5.Inreality,thismaynotalwayshappensincethesimplificationsprecedingEq.(6)normallyarenotfulfilledwhichincreasesthedampingandconsequentlythestabilitymarginofthesystem.DesignAspectsofAvoidingInstability.Thisinstabilitytypehasitsoriginineffectivenegativedampingratioofthelowestloadinthetwo-loadsituation.Toincreasethedampingratiooftheactuatorisconsequentlystabilizinge.g.withthemeter-outorifice.Asmentionedearlier,thefeedbacknormallypassesbetweentheactuatorsthroughthemechanicalstructure,butalsothroughtheload-sensinglinetothepumpandpumppressurevolume.Thebestwaytoreducetheinstabilityriskshouldthereforebetodesignthemechanicalstructureproperly.Thisrequiresthatalargemassorinertiaofthedynamiccouplingfromthelowestloadtothehighest,MKUmustbeavoided.Howtocalculatethismassandothersisgivenasanexampleinthenextchapterforalorrycranearm.AflexiblestructureJournalofDynamicSystems,Measurement,andControlSEPTEMBER1993,Vol.115/527Downloaded22Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfmFig.6ModelofalorrycranestructureTotallengthofcylinder1(m)(highesthad)maxTotallengthofcylinder2(m)HighriskFig.7Variousvaluesof2bAlv>AAj(mKcv2)asafunctionofthepistondisplacementsofthelorrycrane.Negativevaluesindicatedestabiliza-tionoftheoscillations,whilepositivevaluesindicatestabilization.isalsostabilizingcomparedwithastiffone.Thefeedbacksignalthroughaload-sensingpumpisalsostoppedbyalowpassfilter,thatisanorifice,intheload-sensinglinesinceithastopassthisline.Italsoseemsasifafastpumppressurecontrolintheload-sensingsystemmayeasetheinteractionbetweentheactuatorsthroughthefluidpowersystemandincreasetheriskofinstability.Topressure-compensatethecontrolvalveofthelowestload(s)intheload-sensingsystemreducestheinstabilityrisksinceKC:2isclosetozeroofavalvepackagewithafastandidealpressurecompensatorspoolsuchasinFig.1.AnExample:InstabilityofaLorryCraneArm.Will2hA/wAinEq.(13)bepositiveforthelorrycranestructureinFig.6?Aroughcriterionofacranearmisachievedifthefollowingassumptionsaremade:ThestructureisstiffThemassofthestructureislumpedintotheloadmassm9TheboomisthehighestloadOnlypositiveloadsarediscussed,92>-90deg.TheLagrangeequationdescribesthemovementsofthestructure.TisthekineticenergyandMejthetorquefortheangle0-,.d(dfdT,jtw-wMe>,=1-2m(kl(eue2)+y2m(eue2)(15)T=-Llcos(dl)+L2cos(62)jLisinO+Zsin)(16)(17)Time(sec)Time(sec)Fig.8Measurementsonthelorrycrane.Thecranepositionintheleftdiagramgaveinstability.M0Mr,ALiAPLi-A0lAPol-BlSAXLlh)AL2APL2-A02AP02-B2sAXL2(18)Foracranestructure,the0,-«0,-terms(ij)canbeneglectedcomparedtotheaccelerationterms(i=j).Then,thefollowingdynamicequationsofmotionyieldinthefrequencydomain:Z.,L2cos(0,-02)/,-h0l2iAX,LL2cos(di-d2)LA0,A62iA0lAP0l-BtsAXLlAL2APLl-A02AP02-B2sAXL2ALlAPLliiAX,i-2,/,0-hhA0,A0-(19)(20)Equations(18)and(19)canbereducedtothesameformasinEq.(1)whereM=mLi+Ll+2LlL2cos(ei-d2)M2-mMKX=MK2=mL1L2cos(6>1-6>2)+LJ(21)(22)(23)Todescribetheinstabilityrisk,onecontourplotof2bA/u>AAi2/(mKCyV2)havebeenmade,implementedonafull-sizelorrycrane,HIAB070fromHIAB-Foco.Thisplot,inFig.7,hasbeendrawnforacasewhenthereisnoviscousfrictionintheactuators,BXQandB20.KC:V2hasaconstantvalue.Thediagramsaredrawnwiththepositionofthecranearmcylinderonthex-axis,whilethepositionoftheboomcylinderisonthe.y-axis.Theleft,lowercornerofthediagramshowsnovalues,sincethecranearmcylinderhasanegativeloadthere.Thediagramsaredrawnfordifferentvaluesof5wherenegativevaluesindicatearangewhereinstabilitymayoccur.ThediscussionaboveexplainsthelaboratoryexperimentofthelorrycraneinFig.8.Asituationwherethecranearmisfoldedupwiththeboomcylinderpointingintotheskyseemstobepronetoinstability.Inthetests,theboomcylinderhadalowspeedwhilethecranearmcylinderhadahigherspeed.ConclusionsThedesignofafluidpowerfeedbacksystemmustaddressnotonlythehydraulicsystembutalsothestructureitiscontrolling.Thispapershowsclearlythatinstabilitycausedbyloadinteractionthroughamechanicalstructureisreality,atleastinload-sensingsystems.Thistypeofinstabilityriskishighlydependentonthegeometryofthemechanicalstructure.Therefore,aproperdesignofthestructurewouldeliminatethisproblem.Suggestionshave528/Vol.115,SEPTEMBER1993TransactionsoftheASMEDownloaded22Mar2009to202.198.46.187.RedistributionsubjecttoASMElicenseorcopyright;seehttp:/www.asme.org/terms/Terms_Use.cfm

    注意事项

    本文(外文翻译--在内部复杂机械荷载下的负荷传感系统动态特性 英文版【优秀】.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!