进度表.doc

组合式排插外观结构创新与注塑模具设计【10张CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
组合式排插外观结构创新与注塑模具设计【10张CAD图纸和说明书】.rar
进度表.doc---(点击预览)
说明书.docx---(点击预览)
毕业设计外文翻译译文.docx---(点击预览)
毕业设计外文翻译原文.docx---(点击预览)
开题报告.docx---(点击预览)
任务书组合式排插外观结构创新与注塑模具设计.doc---(点击预览)
CAXA图纸
FSC导杆.exb
TD定位管.exb
凹模.exb
动模座板.exb
动模板.exb
垫块.exb
定模座板.exb
推杆固定板.exb
插座外壳.exb
支撑板.exb
FSC导杆.dwg
TD定位管.dwg
凹模.dwg
动模座板.dwg
动模板.dwg
垫块.dwg
定模座板.dwg
推杆固定板.dwg
插座外壳.dwg
支撑板.dwg
压缩包内文档预览:
预览图 预览图
编号:10118846    类型:共享资源    大小:3.52MB    格式:RAR    上传时间:2018-05-23 上传人:俊****计 IP属地:江苏
30
积分
关 键 词:
组合式 外观 结构 创新 立异 注塑 模具设计 10 cad 图纸 以及 说明书 仿单
资源描述:

摘  要


在工业生产中,利用模具生产零件具有效率高,质量好,成本低的一系列优点,使得模具被越来越广泛地使用,特别是增长最快的注塑模具,已成为现代工业生产中工艺设备和发展一个重要的方向。

本课题以排插为例介绍注射模具设计方法,主要研究内容如下:创新设计新型插座即立式可旋转插座组,既节省空间,又避免了实际使用中插头之间的干涉,提高了插口的有效使用率。应用SolidWorks软件完成了插座模块三维模型的设计。利用CAXA软件来完成其装配图和零件图的绘制。在IMOLD插件下设计了模具的成型零部件、浇注系统、冷却系统、推出机构等。实践表明,将软件应用于塑料模具设计能够缩短开发周期,提高设计精度。本文根据实际成产要求设计出了一模两腔的结构模具,其结构紧凑,工作可靠、操作方便、运转平稳,并且冷却效果好、劳动强度低、生产效率高、生产的塑件精度高、生产成本低。


关键词:插座;注塑模具;SolidWorks;IMOLD;

?



Abstract


In industrial production, the mold parts with a series of advantages of high efficiency, good quality and low cost, makes the mold used more and more widely, especially the fastest growing injection mold, has become an important direction of the development of equipment and technology in modern industry.

This thesis takes a socket as an example to introduce the method of injection mold design,and the main research content is as follow: Applying SolidWorks software completed the socket module design of 3D model. Using CAXA software to complete the assembly drawing and part drawing. Finished the injection mold design of a socket by using IMOLD plug-in. Designed injection mold components and parts, including filling system, cooling circuit, and ejecting mechanism with side action, it shows that applying IMOLD software to plastic mold design can shorten development period andimprove design accuracy. The  mold  has some of advantages .for example, The structure is compact, the operation is reliable and ease, The revolution is steady, the cooling performance is good, the labor intensity is low, the production efficiency is high, the precision is high, the precision is high,and the production cost is low.


Key words:socket; injection mould; SolidWorks; IMOLD 

?



目    录


引言 1

1 绪论 2

1.1 注射成型加工原理 2

1.2 注射成型的基本要素 2

1.3 注射模的基本结构 2

1.4 模具设计制造中计算机技术的应用 2

1.5 国内外模具CAD/CAM/CAE技术的发展历程及现状 3

1.6 毕设的主要工作 3

2 组合式排插设计 4

2.1 排插外形设计分析 4

2.2 插座模块材料的确定 5

2.2.1 注塑材料分析 5

2.2.2 PC材料的性能 5

2.2.3 PC的成型工艺 5

2.2.4 注塑材料成型过程 6

2.2.5 注塑材料成型条件 6

2.3 插座模块结构设计 7

2.3.1 壁厚设计 8

2.3.2 脱模角度设计 8

2.3.3 表面质量和尺寸精度 9

3 注射机及相关工艺参数 9

3.1 注射机的选择 9

3.1.1 注射机的结构和分类 9

3.1.2 塑件体积质量的计算 10

3.1.3 型腔数目的确定 10

3.1.4 注射机的选择 10

3.2 有关注射机工艺参数的校核 11

3.2.1 注射机注射量的校核 11

3.2.2 注射压力的校核 11

3.2.3 锁模力的校核 12

3.2.4 最大开模行程的校核 12

3.2.5 注射模具厚度的校核 13

4 成型塑件设计 13

4.1 拔模分析 13

4.2 分型设计 14

4.2.1 创建分型面 14

4.2.2 创建型芯/型腔模块 14

4.2.3 凹模结构设计 15

4.3 布局设计 16

4.4 模架选用 17

4.5 浇注系统设计 18

4.5.1 添加浇口 18

4.5.2 添加流道 19

4.6 排气系统设计 21

4.7 冷却系统设计 21

4.8 推出机构设计 22

4.9 合模导向机构设计 24

5 结论 25

谢  辞 27

参考文献 28




引言

随着经济的发展,科技的进步,塑料产业发展迅速,已经发展成为在国民经济中一个非常重要的产业之一。塑料以其独特的优势,已广泛应用于机械行业和人们的生活的方方面面,比如:塑料良好的电绝缘性被用于电子电器行业;机械性能、加工性能,以及高的强度被用于机械工业行业;耐蚀性被用在化学工业中;其优点,如重量轻,用于人们的生活消费中。目前,越来越多的产品是塑料而非金属制品,由于巨大的优势,今天的塑料制品渐渐地取代金属制品的趋势,正体现了塑料产品的优越性与发展潜力。

中国的家电产业及其他工业机械产业的高速发展,在满足使用性能要求和外观形状要求的同时,也要求越来越高的工艺技术,以制造出越来越复杂的产品结构,这都离不开模具,同时以最低的成本和最快的速度制造生产出高质量的模具是当今对模具制造行业的要求。模具制造行业是当今制造业的基础产业之一,是转化科技成果的基础,而模具又是高新技术产业的一个重要领域。欧洲和其它工业化国家被称之为“点铁成金”的“磁力工业”。美国业内人士认为“模具工业是美国工业的基石”;在德国模具行业中的“重点行业”;在日本,模具协会认为“工业发展在全国各地的秘密是模具”现在,模具行业已基本超过了新兴的电子产业。模具技术水平的高低,决定了产品质量的好坏和生产效率的高低,以及新产品开发能力的强弱。模具已成为衡量一个国家制造业水平的重要指标的度量。今天,模具技术的发展在很大程度上取决于模具的标准化,高质量模具材料的研究,先进的设计和生产技术,特种加工机床及生产技术管理。


内容简介:
编号: 毕业设计( 论文)任务书题 目: 组合式排插外观结构 创新与注塑模具设计 学 院: 专 业: 学生姓名: 学 号: 指导教师单位: 姓 名: 职 称: 题 目 类 型 : 理 论 研 究 实 验 研 究 工 程 设 计 工 程 技 术 研 究 软 件 开发2013 年 12 月 13 日一、毕业设计(论文)的内容在工业生产中,采用模具生产零部件,具有生产效率高、质量好、成本低等一系列优点,使得模具的使用范围日益广泛,特别是发展最快的注塑模具,已经成为现代工业生产中重要的工艺设备和发展方向。模具作为工业生产的基础工艺装备,对提升我国制造业水平及增强我国制造业的国际竞争力具有越来越大的作用,其技术水平的高低已成为衡量一个国家制造业水平的重要标志。本课题以组合式排插为载体,完成组合式排插注塑模具设计。从而进一步提升专业技能,为踏上工作岗位做好准备。本课题的主要工作内容有以下几点:1、收集关于注塑模具设计及组合式排插的相关知识,了解现有组合式排插产品的结构;2、熟悉注塑模具设计的原理及过程;3、查阅相关资料,熟悉塑料产品设计、机械设计基础、注塑模具设计、塑料产品成型工艺、工程力学、工程制图等与本毕业设计课题相关的知识;4、熟练掌握计算机辅助设计软件;5、对设计方案进行详细规划及分析,反复对方案进行论证,逐步进行修改及优化;5、利于相关专业软件完成组合式排插外观结构结构创新设计;6、利于相关专业软件完成组合式排插注塑模具的设计;7、利于相关专业软件完成模具加工工艺及注塑工艺相关项目的计算和分析;8、利于相关专业软件完成产品零件、模具零件及装配 2D 工程图的绘制;9、利于相关专业软件完成模具开、合模及零件拆、装过程视频动画的制作;二、毕业设计(论文)的要求与数据本毕业设计课题需要掌握塑料产品设计、机械设计基础、注塑模具设计、塑料产品成型工艺、工程力学、工程制图等相关知识及计算机辅助设计技能。本课题需要提交的数据及资料主要有以下方面:1、设计方案的规划及分析对比必须在毕业设计说明书中体现出来;2、外观结构创新设计要实用合理;3、模具分型面及浇口的设计要合理,且容易脱模;4、模具的型腔布局要规范合理;5、模具零部件装配正确合理,对模具进行校核计算及填充分析,并提供结果;6、2D 工程图要整洁规范,必须符合国家标准;7、模具开、合模及零件拆、装过程视频动画分辨率不小于 720*480 px;7、外文资料翻译和毕业设计说明书(论文)的内容及字符要符合“毕业设计任务书”的要求;8、毕业设计说明书的格式必须符合 “2014 年毕业设计说明书统一格式”的要求;9、各个文件资料所需填写的时间必须符合“2014 年毕业设计(论文)管理办法”的要求;10、答辩 PPT 课件能清晰体现毕业设计课题的设计思路,版面生动、简洁;三、毕业设计(论文)应完成的工作1、完成开题报告及进度计划表的撰写;2、完成中期检查表的填写;3、完成二万字左右的毕业设计说明书(论文) ;在毕业设计说明书(论文)中必须包括详细的 300-500 个单词的英文摘要;4、独立完成与课题相关,不少于四万字符的指定英文资料翻译(附英文原文) ;5、完成产品零件、模具零件及装配 2D 工程图的绘制;6、完成工作量折合 A0 图纸 3 张以上,其中必须包含两张 A3 以上的计算机绘制图纸;7、完成模具开、合模及零件拆、装过程视频动画的制作;8、完成答辩 PPT 课件的制作;四、应收集的资料及主要参考文献1 吴生绪.塑料成形模具设计技术手册M. 机械工业出版社,20082 屈华昌.塑料成型工艺与模具设计.北京:高等教育出版社.20013 陈万林.实用塑料注射模设计与制造,机械工业出版社2000.104 吴梦陵.塑料成型CAE:Moldflow应用基础M. 北京:电子工业出版社,20105 蒋继宏,王效岳.注塑摸具典型结构 100 例M.北京:中国轻工业出版社.20006 CAHN, R.W. The Coming of Materials Science The_Coming_of_Materials _ScienceM,2001五、试验、测试、试制加工所需主要仪器设备及条件所需主要仪器设备及条件如下:1、计算机一台2、CAD 设计软件(UG 或 Solidworks)任务下达时间:2013 年 12 月 17 日毕业设计开始与完成时间:2013 年 12 月 17 日至 2014 年 05 月 26 日组织实施单位:桂林电子科技大学机电工程学院教研室主任意见:签字: 2013 年 12 月 14 日院领导小组意见:签字: 2013 年 12 月 16 日编号: 毕业设计(论文)开题报告题 目: 组合式排插外观结构 创新与注塑模具设计 学 院: 专 业: 学生姓名: 学 号: 指导教师单位: 姓 名: 职 称: 题 目 类 型 : 理 论 研 究 实 验 研 究 工 程 设 计 工 程 技 术 研 究 软 件 开发2013 年 12 月 13 日1本课题的研究内容、重点及难点本次毕业设计课题为组合式排插外观结构创新与注塑模具设计。近年来,我国模具工业有了很大的发展,模具与生活越来越贴近,给我们的生活带来了很打的方便。在未来的模具市场中,塑料模具发展的速度将高于其它模具,在模具行业中的比例将逐步提高。排插在我们生活中十分常见,模具的使用能降低排插的生产成本并提高生产效率。此次设计中有许多地方需要仔细研究,1.主要内容:1、查阅资料。结合本次课题查阅相关资料;2、 撰写开题报告;3、通过对产品的性能分析,完成相关的模具结构与零件设计;4、设计的模具结构要求完整、合理;5、合理选择尺寸、公差、表面粗糙度和制件材料,绘制的产品图样完整;6、认真分析制件图,确定模具型腔、模具结构、分型面和进料口形式,计算含收缩率的相关尺寸和模具的强度和刚度;7、 翻译专业外语文献。8、 撰写毕业设计(论文)说明书;9、 绘制模具装配图和零件图;2.重点:1、脱模推出机构和侧抽芯机构的设计;2、塑件的结构及工艺分析;3、材料选择及相关参数的计算;4、模具型腔数的确定,模具结构、分型面和进料口形式的选择;5、绘制模具总装图、零件图及尺寸标注。3.难点注射模具的设计以及加工工艺设计。2准备情况(查阅过的文献资料及调研情况、现有设备、实验条件等)1、调研情况:21 世纪,塑料工业以前所谓有的速度高速发展,在各个领域乃至国名经济中已拥有举足轻重的地位。目前,我国塑料工业的高速发展对模具工业提出了越来越高的要求。在 2010年,塑料模具在整个模具行业中所占的比例已上升到 50%左右,未来几年中,所料模具还将保持高速度发展。模具是工业生产中使用极为广泛的重要装备,采用模具生产制品及零件,具有生产效率高,节约原材料,陈本低廉,保证质量等一系列优点,是现代工业生产中的重要手段和主要发展方向。注 塑 成 型 所 用 的 模 具 即 为 注 塑 模 ( 也 称 为 注 射 模 ) , 注 塑 成 型 的原 理 ( 以 螺 杆 式 注 射 机为例) 。 首 先 将 颗 粒 或 粉 状 的 塑 料 加 入 料 斗 , 然 后 输 送 到侧 装 有 电 加 热 的 料 筒 中 塑 化 。 螺杆在料筒前端原地转动,使被加热预塑的塑料在螺杆的转动作用下通过螺旋槽输送至料筒 前 端 的 喷 嘴 附 近 。 螺 杆 的 转 动 使 塑 料 进 一 步 化 ,料 温 在 剪 切 摩 擦 热 的 作 用 下 进 一 步 提 高 并 得 以 均 匀 化 。 当 料 筒 前 端 堆 积 的 体 对 螺杆 产 生 一 定 的 压 力 时 ( 称 为 螺 杆 的 背 压 ) ,螺 杆 将 转 动 后 退 , 直 至 整 好 的 行 程开 关 接 触 , 从 而 使 螺 母 与 螺 杆 锁 紧 。 具 有 模 具 一 次注射量的塑料预塑和储过程结束。这 时 , 马 达 带 动 气 缸 前 进 , 与 液 压 缸 活 塞 相 连 接 的 螺 杆 以 一 定 的 速 度 和 压 力 将 熔 料 通过料筒前端的喷嘴注入温度较低的闭合模具型腔中。熔体通过喷嘴注入闭合模具腔后,必须经过一定时间的保压,熔融塑料才能冷却固化,保持模具型腔所赋予形状和尺寸。当合模机构打开时,在推出机构的作用下,即可顶出注塑成型的塑料制品。2、现有设备:电脑及机械设计专业软件。3、试验条件:电脑机房4、参考查阅的文献资料1 吴生绪.塑料成形模具设计技术手册M. 机械工业出版社,20082 屈华昌.塑料成型工艺与模具设计.北京:高等教育出版社.20013 陈万林.实用塑料注射模设计与制造,机械工业出版社2000.104 吴梦陵.塑料成型CAE:Moldflow应用基础M. 北京:电子工业出版社,20105 蒋继宏,王效岳.注塑摸具典型结构 100 例M.北京:中国轻工业出版社.20006 CAHN, R.W. The Coming of Materials Science The_Coming_of_Materials ScienceM,20013、实施方案、进度实施计划及预期提交的毕业设计资料1、 实施方案(1)通过查阅资料文献和相关手册了解设计背景、现状及工作原理;(2)制定出详细的设计方案及设计过程规划,反复对设计方案进行论证;(3)学习三维绘图软件;(4)使用三维绘图软件完成结构设计;(5)使用软件完成相关参数的计算及结构、受力等分析;(6)使用软件完成零件及装配二维图的绘制;(7)使用软件完成机构运动仿真;(8)完成毕业设计说明书的撰写;2、 进度计划1. 2013 年 12 月 17 日至 2013 年 12 月 23 日,理解消化毕设任务书要求并收集、分析、消化资料文献.2. 2013 年 12 月 24 日至 2013 年 12 月 30 日,开展调研,了解塑件结构,对原材料进行分析,考虑塑件的成型工艺性、模具的总体结构的形式,3. 2013 年 12 月 31 日至 2014 年 1 月 6 日,根据毕设内容完成并交开题报告;4. 2014 年 1 月 7 日至 2014 年 1 月 13 日,完成部分英文摘要翻译。5. 2014 年 3 月 4 日至 2014 年 3 月 10 日,查阅资料,熟悉注射模的结构及有关计算.6. 2014 年 3 月 11 日至 2014 年 3 月 17 日,拟定模具的方案设计、总体设计及主要零件设计,拟定成型工艺过程.7. 2014 年 3 月 18 日至 2014 年 3 月 24 日,查阅有关手册确定适宜的工艺参数,注射机的选择及确定注射设备及型号规格;8. 2014 年 3 月 25 日至 2014 年 3 月 31 日,完成设计计算任务,9. 2014 年 4 月 1 日至 2014 年 4 月 7 日,总体结构的设计和完成总装配图及零件图的设计;10. 2014 年 4 月 8 日至 2014 年 4 月 14 日,完成设计,图纸绘制任务11. 2014 年 4 月 15 日至 2014 年 4 月 21 日,工艺规程说明书的编写;12. 2014 年 4 月 22 日至 2014 年 4 月 28 日,完善设计并完成论文的撰写;13. 2014 年 4 月 29 日至 2014 年 5 月日,修改并打印毕业论文及整理相关资料14. 2014 年 5 月 6 日至 2014 年 5 月 12 日,交导老师评阅,准备论文答辩。15. 2014 年 5 月 13 日至 2014 年 5 月 19 日,修改完善论文准备答辩16. 2014 年 5 月 20 日至 2014 年 5 月 26 日,完成毕业设计,提交论文3、 预期提交的毕业设计资料:1. 开题报告(电子档和纸质材料各一份);2. 进度计划表(电子档和纸质材料各一份);3. 二万字以上的毕业设计论文;在毕业设计论文中必须包括详细的300-500个单词的英文摘要4. 不少于四万字符的指定英文资料翻译(附英文原文;电子档和纸质材料各一份);5. 零件及装配三维数字模型(电子档一份);6. 零件及装配二维图纸(电子档和纸质材料各一份);7. 运动仿真视频文件(电子档一份);8. 刻录光盘(一张,包含所有毕业设计资料电子文档)指导教师意见指导教师:年 月 日开题小组意见开题小组成员签字: 年 月 日院系审核意见院系主管领导签字:年 月 日编号: 毕业设计(论文)外文翻译(原文)院 (系): 专 业: 学生姓名: 学 号: 指导教师单位 : 姓 名: 职 称: 2013 年 3 月 1 日The Injection MoldingThe Introduction of MoldsThe mold is at the core of a plastic manufacturing process because its cavity gives a part its shape. This makes the mold at least as critical-and many cases more so-for the quality of the end product as, for example, the plasticiting unit or other components of the processing equipment.Mold MaterialDepending on the processing parameters for the various processing methods as well as the length of the production run, the number of finished products to be produced, molds for plastics processing must satisfy a great variety of requirements. It is therefore not surprising that molds can be made from a very broad spectrum of materials, including-from a technical standpoint-such exotic materials as paper matched and plaster. However, because most processes require high pressures, often combined with high temperatures, metals still represent by far the most important material group, with steel being the predominant metal. It is interesting in this regard that, in many cases, the selection of the mold material is not only a question of material properties and an optimum price-to-performance ratio but also that the methods used to produce the mold, and thus the entire design, can be influenced.A typical example can be seen in the choice between cast metal molds, with their very different cooling systems, compared to machined molds. In addition, the production technique can also have an effect; for instance, it is often reported that, for the sake of simplicity, a prototype mold is frequently machined from solid stock with the aid of the latest technology such as computer-aided (CAD) and computer-integrated manufacturing (CIMS). In contrast to the previously used methods based on the use of patterns, the use of CAD and CAM often represents the more economical solution today, not only because this production capability is available pin-house but also because with any other technique an order would have to be placed with an outside supplier.Overall, although high-grade materials are often used, as a rule standard materials are used in mold making. New, state-of-the art (high-performance) materials, such as ceramics, for instance, are almost completely absent. This may be related to the fact that their desirable characteristics, such as constant properties up to very high temperatures, are not required on molds, whereas their negative characteristics, e. g. low tensile strength and poor thermal conductivity, have a clearly related to ceramics, such as sintered material, is found in mild making only to a limited degree. This refers less to the modern materials and components produced by powder metallurgy, and possibly by hot isocratic pressing, than to sintered metals in the sense of porous, air-permeable materials.Removal of air from the cavity of a mold is necessary with many different processing methods, and it has been proposed many times that this can be accomplished using porous metallic materials. The advantages over specially fabricated venting devices, particularly in areas where melt flow fronts meet, I, e, at weld lines, are as obvious as the potential problem areas: on one hand, preventing the texture of such surfaces from becoming visible on the finished product, and on the other hand, preventing the microspores from quickly becoming clogged with residues (broken off flash, deposits from the molding material, so-called plate out, etc.). It is also interesting in this case that completely new possibilities with regard to mold design and processing technique result from the use of such materials. A. Design rulesThere are many rules for designing molds. These rules and standard practices are based on logic, past experience, convenience, and economy. For designing, mold making, and molding, it is usually of advantage to follow the rules. But occasionally, it may work out better if a rule is ignored and an alternative way is selected. In this text, the most common rules are noted, but the designer will learn only from experience which way to go. The designer must ever be open to new ideas and methods, to new molding and mold materials that may affect these rules.B. The basic mold1. Mold cavity spaceThe mold cavity space is a shape inside the mold, “excavated” in such a manner that when the molding material is forced into this space it will take on the shape of the cavity space and, therefore, the desired product. The principle of a mold is almost as old as human civilization. Molds have metals into sand forms. Such molds, which are still used today in foundries, can be used only once because the mold is destroyed to release the product after it has solidified. Today, we are looking for permanent molds that can be used over and over. Now molds are made from strong, durable materials, such as steel, or from softer aluminum or metal alloys and even from certain plastics where a long mold life is not required because the planned production is small. In injection molding the plastic is injected into the cavity space with high pressure, so the mold must be strong enough to resist the injection pressure without deforming.2. Number of cavitiesMany molds, particularly molds for larger products, are built for only cavity space, but many molds, especially large production molds, are built with 2 or more cavities. The reason for this is purely economical. It takes only little more time to inject several cavities than to inject one. For example, a 4-cavity mold requires only one-fourth of the machine time of a single-cavity mold. Conversely, the production increases in proportion to the number of cavities. A mold with more cavities is more expensive to build than a single-cavity mold, but not necessarily 4 times as much as a single-cavity mold. But it may also require a larger machine with larger platen area and more clamping capacity, and because it will use 4 times the amount of plastic, it may need a large injection unit, so the machine hour cost will be higher than for a machine large enough for the smaller mold.3. Cavity shape and shrinkageThe shape of the cavity is essentially the “negative” of the shape of the desired product, with dimensional allowance added to allow for shrinking of the plastic. The shape of the cavity is usually created with chip-removing machine tools, or with electric discharge machining, with chemical etching, or by any new method that may be available to remove metal or build it up, such as galvanic processes. It may also be created by casting certain metals in plaster molds created from models of the product to be made, or by casting some suitable hard plastics. The cavity shape can be either cut directly into the mold plates or formed by putting inserts into the plates.C. Cavity and coreBy convention, the hollow portion of the cavity space is called the cavity. The matching, often raised portion of the cavity space is called the core. Most plastic products are cup-shaped. This does not mean that they look like a cup, but they do have an inside and an outside. The outside of the product is formed by the cavity, the inside by the core. The alternative to the cup shape is the flat shape. In this case, there is no specific convex portion, and sometimes, the core looks like a mirror image of the cavity. Typical examples for this are plastic knives, game chips, or round disks such as records. While these items are simple in appearance, they often present serious molding problems for ejection of the product. The reason for this is that all injection molding machines provide an ejection mechanism on the moving platen and the products tend to shrink onto and cling to the core, from where they are then ejected. Most injection molding machines do not provide ejection mechanisms on the injection side.Polymer ProcessingPolymer processing, in its most general context, involves the transformation of a solid (sometimes liquid) polymeric resin, which is in a random form (e.g., powder, pellets, beads), to a solid plastics product of specified shape, dimensions, and properties. This is achieved by means of a transformation process: extrusion, molding, calendaring, coating, thermoforming, etc. The process, in order to achieve the above objective, usually involves the following operations: solid transport, compression, heating, melting, mixing, shaping, cooling, solidification, and finishing. Obviously, these operations do not necessarily occur in sequence, and many of them take place simultaneously.Shaping is required in order to impart to the material the desired geometry and dimensions. It involves combinations of viscoelastic deformations and heat transfer, which are generally associated with solidification of the product from the melt.Shaping includes: two-dimensional operations, e.g. die forming, calendaring and coating; three-dimensional molding and forming operations. Two-dimensional processes are either of the continuous, steady state type (e.g. film and sheet extrusion, wire coating, paper and sheet coating, calendaring, fiber spinning, pipe and profile extrusion, etc.) or intermittent as in the case of extrusions associated with intermittent extrusion blow molding. Generally, molding operations are intermittent, and, thus, they tend to involve unsteady state conditions. Thermoforming, vacuum forming, and similar processes may be considered as secondary shaping operations, since they usually involve the reshaping of an already shaped form. In some cases, like blow molding, the process involves primary shaping (pair-son formation) and secondary shaping (pair son inflation).Shaping operations involve simultaneous or staggered fluid flow and heat transfer. In two-dimensional processes, solidification usually follows the shaping process, whereas solidification and shaping tend to take place simultaneously inside the mold in three dimensional processes. Flow regimes, depending on the nature of the material, the equipment, and the processing conditions, usually involve combinations of shear, extensional, and squeezing flows in conjunction with enclosed (contained) or free surface flows.The thermo-mechanical history experienced by the polymer during flow and solidification results in the development of microstructure (morphology, crystallinity, and orientation distributions) in the manufactured article. The ultimate properties of the article are closely related to the microstructure. Therefore, the control of the process and product quality must be based on an understanding of the interactions between resin properties, equipment design, operating conditions, thermo-mechanical history, microstructure, and ultimate product properties. Mathematical modeling and computer simulation have been employed to obtain an understanding of these interactions. Such an approach has gained more importance in view of the expanding utilization of computer design/computer assisted manufacturing/computer aided engineering (CAD/CAM/CAE) systems in conjunction with plastics processing.It will emphasize recent developments relating to the analysis and simulation of some important commercial process, with due consideration to elucidation of both thermo-mechanical history and microstructure development.As mentioned above, shaping operations involve combinations of fluid flow and heat transfer, with phase change, of a visco-elastic polymer melt. Both steady and unsteady state processes are encountered. A scientific analysis of operations of this type requires solving the relevant equations of continuity, motion, and energy (I. e. conservation equations).Injection MoldingMany different processes are used to transform plastic granules, powders, and liquids into final product. The plastic material is in moldable form, and is adaptable to various forming methods. In most cases thermoplastic materials are suitable for certain processes while thermosetting materials require other methods of forming. This is recognized by the fact that thermoplastics are usually heated to a soft state and then reshaped before cooling. Theromosets, on the other hand have not yet been polymerized before processing, and the chemical reaction takes place during the process, usually through heat, a catalyst, or pressure. It is important to remember this concept while studying the plastics manufacturing processes and the polymers used.Injection molding is by far the most widely used process of forming thermoplastic materials. It is also one of the oldest. Currently injection molding accounts for 30% of all plastics resin consumption. Since raw material can be converted by a single procedure, injection molding is suitable for mass production of plastics articles and automated one-step production of complex geometries. In most cases, finishing is not necessary. Typical products include toys, automotive parts, household articles, and consumer electronics goods,Since injection molding has a number of interdependent variables, it is a process of considerable complexity. The success of the injection molding operation is dependent not only in the proper setup of the machine variables, but also on eliminating shot-to-shot variations that are caused by the machine hydraulics, barrel temperature variations, and changes in material viscosity. Increasing shot-to-shot repeatability of machine variables helps produce parts with tighter tolerance, lowers the level of rejects, and increases product quality ( i.e., appearance and serviceability).The principal objective of any molding operation is the manufacture of products: to a specific quality level, in the shortest time, and using a repeatable and fully automatic cycle. Molders strive to reduce or eliminate rejected parts, or parts with a high added value such as appliance cases, the payoff of reduced rejects is high.A typical injection molding cycle or sequence consists of five phases:1 Injection or mold filling2 Packing or compression3 Holding4 Cooling5 Part ejectionInjection Molding OverviewProcessInjection molding is a cyclic process of forming plastic into a desired shape by forcingthe material under pressure into a cavity. The shaping is achieved by cooling(thermoplastics) or by a chemical reaction (thermosets). It is one of the most commonand versatile operations for mass production of complex plastics parts with excellentdimensional tolerance. It requires minimal or no finishing or assembly operations. Inaddition to thermoplastics and thermosets, the process is being extended to suchmaterials as fibers, ceramics, and powdered metals, with polymers as binders.ApplicationsApproximately 32 percent by weight of all plastics processed go through injection moldingmachines. Historically, the major milestones of injection molding include the invention of thereciprocating screw machine and various new alternative processes, and the application of computersimulation to the design and manufacture of plastics parts.Development of the injection molding machineSince its introduction in the early 1870s, the injection molding machine has undergone significantmodifications and improvements. In particular, the invention of the reciprocating screw machine hasrevolutionized the versatility and productivity of the thermoplastic injection molding process.Benefits of the reciprocating screwApart from obvious improvements in machine control and machine functions, the majordevelopment for the injection molding machine is the change from a plunger mechanism to areciprocating screw. Although the plunger-type machine is inherently simple, its popularity waslimited due to the slow heating rate through pure conduction only. The reciprocating screw canplasticize the material more q
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:组合式排插外观结构创新与注塑模具设计【10张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-10118846.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!