设计说明书.doc

汽车液压制动驱动机构的设计(全套含CAD图纸)

收藏

压缩包内文档预览:(预览前20页/共30页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10204620    类型:共享资源    大小:1.50MB    格式:ZIP    上传时间:2018-06-16 上传人:机****料 IP属地:河南
50
积分
关 键 词:
汽车 液压 制动 驱动 机构 设计 全套 cad 图纸
资源描述:


内容简介:
制动系统在您的汽车里,制动系统是最重要的系统。如果您的制动器失灵,那么后果是灾难性的。制动器实际上是能量转换设备,可以将汽车的动能转化为热能。当你踩下制动器,你便拥有一个比起动你的汽车是强十倍的制动力。制动系统对每个制动件施加的达数以万计磅的压力。在现代的汽车制动系统中,制动主缸由发动机供给能量。所有更新型的汽车都有双回路制动系统,和每个轮的从动制动系统。那样的情况下,如果一个系统失败,另一个将会提供合理充足的制动力,像这样的安全,可靠的制动系统,使得现代汽车制动系统变得更加复杂,但是比早期的制动系统更加安全了。制动系统由以下基本元件组成:位于保护罩下的制动主缸,他直接与制动踏板相连,将脚踏力转化为液体压力。将制动主缸和位于每个车轮的轮缸连接到一起的刚性油杆和制动软管,和经过特殊处理用以这种特殊环境下的制动油液。制动液和制动钳,它们由轮缸直接拉紧制动鼓和制动盘从而产生阻力,以降低车速。今年来,制动器在设计上有了很大的变化。盘式制动器,近些年来多用与前轮制动,正在快速地替代了用于汽车后轮的鼓式制动器。这大体由于它的更为简单的设计、更轻的重量和更好的制动性能。盘式制动器相对于鼓式最大的优点是能更有效的防止制动效能衰退。效能衰退是一种长期在刹车引起的高温等恶劣环境下工作而引起的临时状况,它通常发生在当制动钳和制动蹄由于高温、高压等环境下应用而变的光滑。相对于鼓式制动器,盘式可以更好得实现空气冷却,而鼓式不能进行不断的冷却,因为不断地冷却会导致浸水过多。而盘式浸水后会很快恢复正常,因此也可以进行多次水冷。“助力器”应用在动力制动系统,用发动机的能量来对制动主缸施加压力。 “防抱死系统” ,最初应用在航空制动系统,是用计算机控制着阀体来对每个制动轮缸增减压力。如果有一轮抱死,汽车将失去转向能力。有了 ABS 防抱死系统,不论制动踏板的力有多大,每个轮都不会抱死,这样将会防止滑动(提高驾驶员在紧急刹车时的操纵稳定性) 。同这些先进的系统原理一样的是,在那些马拉车和儿童车的年代,将车辆的动能转化为热能这个基本过程。为了使马车停止,驾车者应拉动摩擦车轮的拉杆。但是今天,由于电动机车蓄能制动器的发展,回收这种浪费的能量的新方式正在被开发。在这类电力车中,当踩下制动器,机车将进入到“发电模式” ,并将汽车的动能以化学能的方式存储在电池组内,等到绿灯亮了都可以再次使用。盘式制动器盘式制动器就是用夹紧力使转动盘和安装在悬架上的制动钳内的垫片压向转动盘,从而使车速减低。盘式制动器的制动原理同自行车刹车的原理相似,夹紧制动钳,使垫片夹紧车轮,从而使自行车减速。盘式制动器提供更高的刹车性能、更加简单的设计、更轻的重量和较鼓式制动器性能更好的抗水性能。盘式制动器,跟汽车的其他创新一样,最初是为了跑车开发的,但是现在成了每辆汽车的标准零件。大多数汽车上,前轮为盘式制动,后轮是鼓式制动。鼓式制动用两个半圆形的制动蹄压在制动鼓的内圆面上制动。更老式的汽车通常四个轮全为鼓式制动,而现代的许多汽车都是盘式制动。由于盘式制动器较鼓式制动器排水教容易,因此在较湿的情况下可以很好的工作,但着并不是说水对它没有影响,确切说有影响。如果汽车驶过一水坑,然后你去使用制动器,在几秒钟内,你的制动器将不能工作。盘式制动器可以更好的进行气流冷却,这将增加它们的有效时间。一些高性能的盘式制动器的转向盘钻有小孔或开槽,这样可以防止垫片老化(由于高温而变硬化) 。早在 70 年代,盘式制动器已作为汽车上的标准零件。制动鼓制动鼓是一个很重的平头柱体,他被夹在轮缘和轮毂之间,鼓的内表面装有制动蹄衬片,一旦开始制动,制动蹄承受促动力压紧制动鼓的内圆面而减缓车轮的旋转。制动鼓外表面通常覆盖着散热片,以更好的冷却。但它们的内部却得不到冷却,因为一旦水进入通风管道的冷却孔,会使制动性能大大的下降。在大多数老式的汽车上都可以见到制动鼓,但是它们正在被后轮盘式制动器快速的替代。在 70 年代前期,大多数汽车采用四个轮全是鼓式制动这种典型的装备,制动钳制动钳象 C 钳子一样将摩擦块压紧转动盘,它跨立于转向盘上,并包含辅助缸或者说是制动轮缸的活塞。制动钳被安装在 各个轮的悬架上,制动钳通常安装在车轴上,将车轮的扭转力矩传给汽车底盘。制动油管将制动钳连到有制动主缸控制的制动拉杆上。各个制动钳上都装有放气阀,将油液中的气泡从系统中排除。滑动钳盘式制动器是最为普遍的类型,在制动时它的制动钳可以做轻微的轴向滑动,这是由于制动块的移动(跟制动钳相关) 。一些制动钳包含两个或四个独立的活塞。这些制动钳必须恰当固定,如,钳体不可以做轴向滑动,而有每个转向盘上的活塞轴向运动,这种也叫做“双式或双活塞式制动钳” ,在许多高性能的汽车上得到广泛应用。制动轮缸制动轮缸,也叫“辅助”轮缸,在其内有一可滑动活塞,将液体的压力能转化为机械能。在缸内,作用于活塞上的液体压力使制动蹄或制动片压向制动鼓或制动盘的表面。每个车轮都有一个轮缸(一些系统甚至有多个) ,鼓式制动器轮缸一般有金属壳体、活塞复位弹簧、两个活塞、两个橡胶圈或密封垫,和两个用来防止灰尘和水进入的橡胶垫组成。这种类型的轮缸安装有推杆,通过橡胶垫从活塞的外端伸出,固定并压住制动蹄。在盘式制动器中,制动轮缸安装在制动钳内。所有的轮缸都装有放气阀,以便及时清除系统中的气泡。当踏下制动踏板,拉动主缸活塞压着各轮的制动回路和辅缸中的制动液。油液带动轮缸的活塞运动,推使制动蹄和制动片压向制动盘或制动鼓。当放开制动力,鼓式制动器中的复位弹簧将活塞拉回复位。盘式制动器中,制动钳的活塞密封台圈可使活塞慢慢回位,同时,还可以清洁表面以降低摩擦阻力。驻车制动驻车制动(有时也叫做紧急制动)是一个活动缆绳来控制制动器从而使机车制动。驻车制动激活后轮制动器。通常由一缆绳链接(机械式)代替液压来控制制动蹄或制动片压向制动盘或制动鼓制动。通过操纵杆或压杆按钮来放开制动蹄。大多数驻车制动系统是自动调节装置。有一调节器来弥补制动蹄的磨损。在许多汽车上,在制动蹄磨损或新换的情况下,驻车制动可以进行重新调整。在汽车行驶中,通常通过重复使用驻车制动系统来进行调整。当您架车上山时,驻车系统是非常有用的:如若您驾驶一辆手动转向的汽车,且行驶至停到一个斜面上,您可能会意识到,您没有足够的脚来同时控制离合器、制动器、和油门。换句话说,当你重新启动时,汽车很可能会轻轻得向后倒退,如果这时正好有车在您的后面行驶,那么将会出问题了。在这种情况下,驻车制动将很有用:停车时使用驻车制动。当你再次起动时,放开离合器同时踩下油门,然后松开驻车制动。这样你就不必将左脚不停得从制动器到离合器,你的右脚从离合器到油门了。只需稍加练习,你就可以轻松得做到了。此外,如果您在山坡上某人的后方行驶,记住,要给对方留出向后倒退的空间,尤其是对卡车。有些车可能没有驻车制动的放松装置,只能在汽车行驶后或倒车时自动松开。记住,定期检查并将您的驻车制动保持在良好的状态是一个很好的办法,它可能在你的主制动系统失灵时挽救你的性命!The Brake System/The braking system is the most important system in your car. If your brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of your vehicle into thermal energy (heat). When you step on the brakes, you command a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes. In modern systems, the master cylinder is power-assisted by the engine. All newer cars have dual systems, with two wheels brakes operated by each subsystem. That way, if one subsystem fails, the other can provide reasonably adequate braking power. Safety systems like this make modern brakes more complex, but also much safer than earlier braking systems. The brake system is composed of the following basic components: The “master cylinder“ which is located under the hood, and is directly connected to the brake pedal, converts your foots mechanical pressure into hydraulic pressure. Steel “brake lines“ and flexible “brake hoses“ connect the master cylinder to the “slave cylinders“ located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes“ and “pads“ are pushed by the slave cylinders to contact the “drums“ and “rotors“ thus causing drag, which (hopefully) slows the car. In recent years, brakes have changed greatly in design. Disc brakes, used for years for front wheel applications, are fast replacing drum brakes on the rear wheels of modern cars. This is generally due to their simpler design, lighter weight and better braking performance. The greatest advantage of disc brakes is that they provide significantly better resistance to “brake fade“ compared to drum type braking systems. Brake fade is a temporary condition caused by high temperatures generated by repeated hard braking. It occurs when the pads or shoes “glaze“ due to the great pressure and heat of hard use. Once they cool, the condition subsides. Disc brakes allow greater air ventilation (cooling) compared to drum brakes. Drum brakes are not internally ventilated because if they were, water could accumulate in them. Disc brakes can rapidly fling off any water that they are exposed to, and so they can be well ventilated. “Boosters“ are present in “power brake“ systems, and use the engines energy to add pressure to the master cylinder. “Anti-lock“ (ABS) systems, originally developed for aircraft braking systems, use computer controlled valves to limit the pressure delivered to each slave cylinder. If a wheel locks up, steering input cannot affect the cars direction. With ABS, no matter how hard the pedal is pressed, each wheel is prevented from locking up. This prevents skidding (and allows the driver to steer while panic-braking). As impressive as these advances are, the basic process of converting a vehicles momentum into (wasted) heat energy has not changed since the days of the horse and buggy. To stop a horse drawn carriage, the driver would pull on a lever which would rub on the wheel. But today, with the advent of regenerating brakes on electric vehicles, new ways of recapturing this lost energy are being developed. In these types of electric cars, when you step on the brakes, the motor switches into “generator mode“, and stores the cars momentum as chemical energy in the battery, to be used again when the light turns green! Disc Brakes Disc brakes use a clamping action to produce friction between the “rotor“ and the “pads“ mounted in the “caliper“ attached to the suspension members. Inside the calipers, pistons press against the pads due to pressure generated in the master cylinder. The pads then rub against the rotor, slowing the vehicle. Disc brakes work using much the same basic principle as the brakes on a bicycle; as the caliper pinches the wheel with pads on both sides, it slows the bicycle. Disc brakes offer higher performance braking, simpler design, lighter weight, and better resistance to water interference than drum brakes. Disc brakes, like many automotive innovations, were originally developed for auto racing, but are now standard equipment on virtually every car made. On most cars, the front brakes are of the disc type, and the rear brakes are of the “drum“ type. Drum brakes use two semi-circular shoes to press outward against the inner surfaces of a steel drum. Older cars often had drum brakes on all four wheels, and many new cars now have 4-wheel disc brakes. Because disc brakes can fling off water more easily than drum brakes, they work much better in wet conditions. This is not to say that water does not affect them, it definitely does. If you splash through a puddle and then try to apply the brakes, your brakes may not work at all for a few seconds! Disc brakes also allow better airflow cooling, which also increases their effectiveness. Some high performance disc brakes have drilled or slotted holes through the face of the rotor, which helps to prevent the pads from “glazing“ (becoming hardened due to heat). Disc brakes were introduced as standard equipment on most cars in the early seventies. Brake Drums The brake drum is a heavy flat-topped cylinder, which is sandwiched between the wheel rim and the wheel hub. The inside surface of the drum is acted upon by the linings of the brake shoes. When the brakes are applied, the brake shoes are forced into contact with the inside surface of the brake drums to slow the rotation of the wheels. The drums are usually covered with fins on their outer surfaces to increase cooling. They are not cooled internally, because water could enter through the air vent cooling holes and braking would then be greatly impaired. Drum brakes are found on the rear wheels of most older cars, but they are increasingly being fazed out in favor of rear disc brakes. Drum brakes were standard equipment on all four wheels of most cars until the early 70s. Brake Calipers The caliper works like a C-clamp to pinch the pads onto the rotor. It straddles the rotor and contains the hydraulic “slave cylinder“ or “wheel cylinder“ piston(s). One caliper is mounted to the suspension members on each wheel. The caliper is usually mounted onto the spindle, allowing it to deliver the torsional force of the wheel to the chassis via the control arms. Brake hoses connect the caliper to the brake lines leading to the master cylinder. A “bleeder valve“ is located on each caliper to allow air bubbles to be purged from the system. “Floating caliper“ disc brakes, the most common variety, allow the caliper to move from side to side slightly when the brakes are applied. This is because only one pad moves (in relation to the caliper). Some calipers contain two or four seperate pistons. These calipers are fixed in place; i.e., there is no lateral movement like the floating caliper, the pistons take up the slack on each side of the rotor. These are called “dual cylinder“ or “dual piston“ calipers, and are standard equipment on many performance cars. Wheel (Slave) CylinderWheel cylinders, also called the “slave“ cylinders, are cylinders in which movable piston(s) convert hydraulic brake fluid pressure into mechanical force. Hydraulic pressure against the piston(s) within the wheel cylinder forces the brake shoes or pads against the machined surfaces of the drum or rotor. There is one cylinder (or more in some systems) for each wheel. Drum brake wheel cylinders are usually made up of a cylindrical casting, an internal compression spring, two pistons, two rubber cups or seals, and two rubber boots to prevent entry of dirt and water. This type of wheel cylinder is fitted with push rods that extend from the outer side of each piston through a rubber boot, where they bear against the brake shoes. In disc brakes, the wheel cylinder is built into the caliper. All wheel cylinders have bleeder screws (or bleeder valves) to allow the system to be purged of air bubbles. As the brake pedal is depressed, it moves pistons within the master cylinder, pressurizing the brake fluid in the brake lines and slave cylinders at each wheel. The fluid pressure causes the wheel cylinders pistons to move, which forces the shoes or pads against the brake drums or rotors. Drum brakes use return springs to pull the pistons back away from the drum when the pressure is released. On disc brakes, the calipers piston seals are designed to retract the piston slightly, thus allowing the pads to clear the rotor and thereby reduce rolling friction. Parking (Emergency) BrakesThe parking brake (sometimes called the emergency brake) is a cable-activated system used to hold the brakes continuously in the applied position. The parking brake activates the brakes on the rear wheels. Instead of hydraulic pressure, a cable (mechanical) linkage is used to engage the brake shoes or discs. When the parking-brake pedal is pressed (or, in many cars, a hand lever is pulled), a steel cable draws the brake shoes or pads firmly against the drums or rotors. The release lever or button slackens the cables and disengages the brake shoes. The parking brake is self adjusting on most systems. An automatic adjuster compensates for lining (brake shoe) wear. On many cars, the parking brake is used to re-adjust the brake shoes as they wear in, or when the shoes are replaced. In these systems, the adjustment is made by repeatedly applying the parking brake while backing up. The parking brake can be useful while driving up hills: If youre driving a manual transmission car, and you pull up to a stop on an incline, you might notice that you dont have enough feet to operate the clutch, brake, and gas at the same time. In other words, you will likely roll backwards slightly while getting started again. If a someone pulls up right behind you, this can be a problem. Your parking brake is useful in this situation: Apply the parking brake after you stop. When you want to go, release the clutch while pressing the gas, and release the parking brake. This keeps you from having to quickly switch your left foot from the brake to the clutch, or your right foot from the brake to the gas pedal. A little practice, and youll be able to do it smoothly. Also, remember if you pull up behind someone who is stopped on a hill, give them extra room to roll back a little. Especially if its a truck. Some cars have no parking brake release! They automatically release the parking brake when the car is placed in drive or reverse. Remember, its a good idea to test the parking brake periodically and keep it in good condition. It may save your life if the main braking system fails!/Article_Show.asp?ArticleID=689河北科技师范学院毕业论文(设计)外文翻译题 目: 制动系统 学 生 姓 名: 张海燕 指 导 教 师: 郑立新 系 别: 机械电子系 专业 、班级: 机械设计制造及自动化 0204 班 完 成 时 间: 2005 年 12 月 20 日 河北科技师范学院教务处制下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709851摘要使行驶中的汽车减速至停车,使下坡行驶的汽车的速度保持稳定以及使已停驶的汽车保持不动,这些作用统称为汽车制动。汽车的制动性直接关系到交通安全,重大交通事故往往与制动距离太长、紧急制动侧滑有关,改善制动性能始终是汽车设计和制造部门的首要任务对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。但这些外力的大小都是随机的、不可控的。故汽车上必须装设有一系列专门装置,以使驾驶员能根据道路和交通情况,借以使外界在汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动。本文主要是对行车制动的设计,且对行车制动采取液压制动。因为它作用滞后时间较短,工作压力高,因而轮缸尺寸小,可以安装在制动器内部,直接作为制动蹄张开机构,而不需要制动臂等传动件,使之结构简单、质量小且机械效率高。本文中主要针对桑塔纳轿车进行设计。通过汽车对制动力要求入手来计算出轮缸输入力、主缸输入力和踏板力的需求,从而确定出系统各部分尺寸参数。在设计中对制动管路采取交叉型控制,直行制动时,任意回路实效,总制动力都能保持正常值的 50%,且结构简单,成本低、易于实现。经设计计算,该结构能使汽车在行驶时短距离内停车且维持行驶方向的稳定性,改善了制动性能。关键词:制动性;制动驱动机构;制动性能设计下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709852目录前言 .11 汽车最小制动力的确定 .22 前后制动器的制动力分配比例。 .33 各轮缸输入力的确定 .53.1 前轮盘式制动器的输入力的确定 .53.2 后轮鼓式制动器轮缸输入力的计算 .64. 制动轮缸直径 d 的确定 .84.1 对于前轮轮缸直径 .815. 制动主缸直径 的设计计算 .806. 前轮轮缸主要结构参数的设计计算 .96.1 工作压力 P .96.2 单位时间内油液通过缸筒有效截面体积的流量; .96.3 缸筒的设计 .106.3.1 缸筒内径 .116.3.2 缸筒壁厚 .116.3.3 缸盖厚度的确定 .126.3.4 工作行程的确定 .126.3.5 最小导向长度的确定 .136.3.6 活塞宽度的确定 .136.3.7 缸体长度的确定 .136.4 活塞的设计 .136.4.1 结构形式 .136.4.2 活塞与活塞杆的连接 .136.4.3 活塞材料 .136.5 密封圈 .146.6 活塞杆 .146.6.1 活塞杆要在导向套中滑动 .146.6.2 活塞杆的计算 .146.7 活塞杆的导向套、密封、防尘 .14下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 1197098536.7.1 导向套长度的确定 .146.7.2 加工要求 .156.8 油口 .156.9 密封件、防尘圈的选用 .157 . 后轮轮缸的设计计算 .167.1 后轮工作压力 P .167.2 缸筒的设计 .177.2.1 缸筒内径 .177.2.2 缸筒壁厚 .177.2.3 缸筒壁厚演算 .177.2.4 缸体底部厚度 .177.2.5 缸体头部法兰厚度 .177.2.6 液压缸工作行程的确定 .177.2.7 最下导向长度 .187.2.8 缸体长度的确定 .187.3 活塞的设计 .187.4 活塞杆的设计 .187.5 活塞杆的导向套、密封、防尘 .187.6 排气阀 .187.7 油口 .187.8 密封件,防尘圈 .198 制动主缸的设计计算 .208.1 主缸主要供油量的计算 .208.2 第一段长度的确定 .208.3 缸筒的结构参数的确定 .218.3.1 缸筒壁厚的确定 .218.3.2 缸筒连接方式 .218.4 第一缸活塞直径的确定 .218.5 第二缸的设计 .228.6 导向套、密封 .22下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 1197098548.7 油口的选择 .228.8 选取弹簧 .239.系统液压阀的选择 .2310. 管道尺寸 .2311.结束语 .2412 致谢 .24参考文献: .24下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709855下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709856前言设计制动驱动机构应满足如下主要要求 1:(1)具有足够的制动效能。 (2)工作可靠。行车制动装置至少有两套独立的驱动制动器管路,当其中一套管路失效时,另一套完好的管路应保证汽车制动能力不低于没有失效时的 30%。(3)在任何速度制动时,汽车都不应丧失操纵性和 方向稳定性。(4)操纵轻便,并具有良好的随动性。(5)制动时,制动系产生的噪声应尽可能小。(6)作用滞后性应进可能好。作用滞后性即制动反应时间。以踏板开始动作至达到给定的制动效能所需的时间来评价。人力液压制动系的基本组成有前轮制动器,制动主缸,及后轮制动器组成。基本原理如下,作为制动能源的驾驶员所施加的控制力,通过作为控制装置的制动踏板机构传到容积式液压传动装置的主要部件制动主缸。制动主缸属于单向作用活塞式油泵,其作用是将自踏板机构输入的机械能转化为液压能。液压能通过油管输入前、后轮制动器和制动轮缸。制动轮缸属于单向作用活塞式油缸,其作用是将输入的液压能再转换成机械能,促使制动能再转换成机械能,促使制动器进入工作状态。下面选桑塔纳轿车车型来对液压驱动机构进行设计。 2 1 汽车最小制动力的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:汽车液压制动驱动机构的设计(全套含CAD图纸)
链接地址:https://www.renrendoc.com/p-10204620.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!