会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文翻译-- The Morphology Prediction of Lysozyme Crystals Deduced from the BFDH Law and.PDF外文翻译-- The Morphology Prediction of Lysozyme Crystals Deduced from the BFDH Law and.PDF -- 1 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

TheMorphologyPredictionofLysozymeCrystalsDeducedfromtheBFDHLawandAttachmentEnergyModelBasedontheIntermolecularInteractionZhanzhongWang,PingpingJiangSchoolofAgricultureandBioengineeringTianjinUniversityTianjin300072,PeoplesRepublicofChinawzz7698tju.edu.cnLepingDangSchoolofChemicalEngineeringandTechnologyTianjinUniversityTianjin300072,PeoplesRepublicofChinadlepinghotmail.comAbstractThecrystalmorphologyoforthorhombiclysozymeispredictedusingtheBravaisFriedelDonnayHarkerBFDHandtheattachmentenergyAEmodelsofmolecularsimulationsoftwareCerius2invacuo.Themorphologypredictedbytwomodelsisapproximatelyconsistent.ThemorphologypredictedbyAEmodelisingoodagreementwiththemorphologyofcrystalsgrownfromsolutionatpH6.5.Themaincrystalfaces{011},{101}and{110}areobservedinmorphologypredictedbyAEmodel.BycleavingrevealablecrystalfacesinmorphologypredictedbyAEmodel,surfacechemistryvisualizationandtheoreticalanalysisbasedoninteractionofinintramoleculesorintermoleculesfortheimportantmorphologicalformsareperformed.TheresultshowsthatsterichindranceandHbandinteractionplayscriticalrolefortheplatelikemorphologyoforthorhombiclysozyme.KeywordslysozymemorphologypredcitionmodelingIntermolecularInteractionINTRODUCTIONTheshapeofacrystalisgovernedbytherelativegrowthratesofeachofthecrystalfacespresent.Themostprominentfaceofacrystalistheslowestgrowing,whilethesmallestfaceisthefastestgrowing.Thus,themorphologicalimportanceofaparticularfaceisinverselyproportionaltothegrowthrateofcrystalface.Identificationofpossiblegrowthdirectionsorfacesisthefirstpartofmorphologyprediction1.EarlyworkincrystalmorphologypredictionwasundertakenbyGibbsin1875inwhichheproposedthattheshapeofacrystalwillbeonetominimizethetotalfreeenergyassociatedwiththesurfaceenergiesofthegrowncrystal.LaterBravais,Friedel,andDannayandHarker1,2proposedmorphologicalsimulationsbasedmerelyoncrystallatticegeometry.TheBFDHlaw,substantiatedbyempiricalobservation,proposedthatthecrystalwillbeformedbyfacesboundingthedirectionsofthegreatestinterplanarspacingofthecrystallattice.Accordingtothislaw,thelargertheinterplanardistancedhklis,thelargerthemorphologicalimportanceMIofthecorrespondinghklfaceis.Thus,basedonunitcellparameters,spacegroupandhence,extinctioncondition,andthereciprocaloftheinterplanardistances1/dhkl,usedasthedistancesfromthecentreofthecrystaltotherespectivehklsurfaces,onemayobtainatheoreticalBFDHmorphology.TheBFDHmethodestimatesthemorphologyfromthecrystalsymmetryandthelatticeparameterswithouttakingintoaccountthechemicalnatureandpackingoftheatomsormoleculesthatformthecrystalandneglectingthepossibilityofspecificenergeticinteractionsbetweenthesurfaceatomsinfluencingthecrystalmorphology.Itmaybeusedasaquickscreeningtooltoestimatethehabitofacrystal.In1955,HartmanandPerdokproposedperiodicbondchainPBCtheorytoaccountforenergyinteractionsbetweencrystallizingspeciesinthederivationofcrystalmorphology.LaterthistheorywasfurtherdevelopedbyHartmanandHartmanandBennema3.APBCisastrongbondbetweenmoleculesrunningparalleltoacrystallographicdirection.AcrystalismadeofanetworkofPBCshavingdifferentenergiesdependingonthebondenergybetweenthemoleculestheycontain.Consequently,itispossibletoclassifythePBCsasafunctionoftheirenergyanddistinguishstrongPBCsfromweakPBCs4.Growthrateisrelatedtodirectionofbondchainandthefastestdirectionofcrystalgrowthisthatofthestrongestchemicalbond.In1980,basedonPBCmodel,HartmanandPerdokproposedattachmentenergymodel.Buildonincorporatingenergytermsinthecalculationofthetheoreticalcrystalmorphology,advancesinmorphologypredictionwererealizedwhencrystalgrowthwasviewedastheattachmentofslicesorlayersoforderedmoleculestoanexistingcrystalface1.Thisconcept,knownastheattatchmentenergyAEmethod,requiresthedeterminationofthelatticeandsliceenergiesforcalculationoftheattachmentenergyineachimportantcrystallographicdirection.Thisattachmentenergydirectlyinfluencesthemacroscopicshapeofthecrystal4.Thelatticeenergyistheenergycalculatedbysummingpairinteractionsfortheentire,perfectcrystal.Theenergyreleasedontheformationofagrowthsliceofthickness,dhkl,isthesliceenergy,whiletheenergyreleasedontheattachmentofagrowthslicetothecrystalsurfaceistheattachmentenergy.Thetermofinterestformorphologicalpredictionsistheattachmentenergyofeachcrystalface.Subtractingthesliceenergyforeachfacefromthelatticeenergyprovidestheattachmentenergyforeachofthefaces.Therelativegrowthrateforeachfacewastakentobeproportionaltoattachmentenergyandhencefaceswiththelowestattachmentenergieswerepredictedtobetheslowestgrowingsurfacesandhencetohavethehighestmorphologicalimportance5.Thenamecrystallogenesisarosewhenitbecameevidentthatthefieldofcrystallizationofproteinsandotherbiologicalmacromoleculeswasnotrestrictedsimplytocrystalproductionfordiffractionstudies,butitencompassed,infact,allphasesofstructuralbiology,fromproteinexpressionandpurification,torecordingofdiffractiondata.Withregardto9781424447138/10/25.00©2010IEEEbiologicalmacromolecule,Xraycrystallographyhasplayedafundamentalroleinconnectingthedotsbetweengenomicdataandbiologicalfunctionbyprovidingaccuratestructuralinformationtoresolveseveralsignificantresearchproblems.TheearliestXraydiffractionstudiesofthestructuresofbiologicalmacromoleculesbeganintheearlypartofthe20thcentury,verylittleprogresshasbeenmadeinourunderstandingofhowtofacilitatetheprocessofcrystallizingsuchmacromoleculesforstructuralanalyses.Asaresult,obtaininghighqualitymacromolecularcrystalsremainsdifficult,unpredictable,andfrustratingandbecomespersistentbottlenecktothegreaterapplicationofXraycrystallographyinstructuralbiology6,7.SolvingproteinstructuresbyXraycrystallographyiscontingentupontheavailabilityofordered,diffractionqualitycrystals8.Inthefieldofcrystalgrowth,inordertoobtainhighqualitylaboratorygrowncrystals,theresearcherwhoisinterestedincrystalmorphologyoftenneedstovisualizeacrystalhabitresultingfromasetofobservedorcalculateddata,suchasgrowthrates,surfaceenergiesandhabitcontrollingfactors.Crystallizationiseffectedviamolecularrecognitionattheinterfacebetweenthegrowingcrystalanditsmotherphase.Sucheffectshavelongbeenobservedandhavebeenrelatedtogrowthsolutionthermodynamics,specificfacestructureandgrowthmechanism,andmolecularrecognitionprocessatspecificplanes9.Increasedunderstandingofcrystalgrowthfromsolutioncanenhancetheperformanceoftheseparationandpurificationprocessesinmanyindustries.Althoughthecrystalgrowthhabitdiffersfromthetheoreticalmorphologyduetotheinfluenceofcrystalgrowthenvironment,thecrystalmorphologyisverymuchconnectedwiththecrystalstructure.Crystalmorphologyhasbeenthefocusofnumerousresearchefforts1012.Crystallizationofheneggwhitelysozymehasalreadybeenstudiedforsomeyearssinceitisanidealmodelsystemforcrystallizationofproteinsingeneral.Otherkindsoflysozymecrystalshaveseldombeenused,exceptforthetheorthorhombicform13.Themorphologyanalysisoftheorthorhombiclysozymecrystalsmayincreaseourknowledgeofcrystalgrowthoflysozymetoinstructtoobtainhighqualitycrystals,whichcanbeappliedstructuralanlysistoprovideaccurateinformationforgenomicdataandbiologicalfunction.Theaimofthepresentresearchiswastoapplyadvancedmolecularmodellingtechniquestosimulatethetheoreticalcrystalmorphologyoforthorhombiclysozyme,andcomparesthetheoreticalmorphologywithactualhabitoflysozymecrystalgrowninanaqueoussolution.Inthecourseofrefiningthemodel,valuableinformationconcerningmolecularinteractionswithinthelysozymecrystalwasextractedfromthesimulation.EXPERIMENTALANDCOMPUTATIONALMOLECULARMODELINGMETHODOLOGYMaterialsHeneggwhitelysozyme,recrystallizedandlyopholizedwaspurchasedfromSigmaandusedwithoutfurtherpurification.Itsmolecularweightwasassumedtobe14.3kgmol1.Otherchemicalreagentswereanalyticalpurity.DistilleddeionizedwaterofHPLCgradewasused.Crystallizationexperimentandmicroscopymeasurement.Proteinwaterstocksolutionswithproteinconcentrationof1020wereprepared,andtheirmeasuredpHwas6.5orslightlyhigher.Ifnecessary,pHwasloweredto6.5bysmalladditionsofHClaqueoussolutions.Supersaturatedsolutionswereobtainedbymixingproteinwaterstocksolutionswithconcentratedsaltwaterstocksolutions.Astocksolutionofsodiumacetatebuffercontaining0.02sodiumazidewasalsoaddedtominimizepossiblepHchanges.Thesupersaturatedsolutionswerethenleftat4°C315daysdependingonsamplesupersaturationtoproducecrystals.Amicroscopicobservationofthecrystalmorphologywascarriedouttakingadvantageofelectronicmicroscopy.DigitalimagesanalysiswasperformedusingaPanasonicLumixDMCFZ20systemoperatingthePanasonicimageanalysisconnectedtoa3CCDcolorvisioncameramountedonanOlympusBH2opticalmicroscope.Cerius2modelingCrystalstructuresdataoforthorhombiclysozymewasachievedbyProteinDataBanktocalculatetheoreticalmorphology.Experimentalmorphologywasusedtocomparewiththeresultofthesimulatedtheoreticalmorphology.CrystalMorphologyPredictionUsingBFDHandAEmodelClassicmolecularmechanicsanddynamicssimulationswerecarriedoutusingtheCerius2softwarepackage.Thecrystalbuilder,molecularmechanics,andmorphologypredictionmoduleswereemployedtoaccomplishthemodelinggoalsofthisresearch.Universalforcefieldwasused.RESULTSANDDISCUSSIONStructureanalysisThecrystalstructureoflysozymereportedincludedorthorhombic,monoclinic,tetragonalandtriclinicforms,whichhasbeenresolvedusingXraydiffractionstudies.Inoursimulations,thecrystalstructureoftheorthorhombiclysozymewasobtainedfromtheProteinDataBank14.ThesterestructureoflysozymemoleculeisshowninFigure1.Theunitcellofitscrystalstructureareasfollowsa30.47,b59.39,c68.78,αβγ90°,andspacegroupisP212121,whichisshowninFigure2.Figure1.Thesterestructureoflysozymemoleculeballandstickstyleleft,stickstylerightFigure2.TheunitcelloforthorhombiclysozymeMorphologypredictionbyBFDHmodelStructureanalysisThethreefaces{110},{002},{011},{101}dominatedthecrystalhabitasrevealedfromtheBFDHmorphologicalprediction.TheresultsaresummarizedinTableⅠ.AccordingtoBFDHlaw,thelargertheinterplanardistancedhklis,thelargerthemorphologicalimportanceMIofthecorrespondinghklfaceis.FromtheTable1,itcanbeseenthatdhklof{011}faceisthelargestanditsfacetareais63.49oftotalfacetarea,whichmeans{011}faceownsthelargestthemorphologicalimportanceMI.Thedhklof{101}faceisslightlylargerthan{110}faceanddhklof{002}isthesmallest.CrystalmorphologypredictedbyBFDHmodelcanbededucedandwasshowninFigure3a,revealingallfaceswhichbelongtothecrystallographiczones{110},{002},{011},and{101},respectively.FromFigure3a,thereisawellagreementwithcalculationresultinTable1.The{011}facewasfoundtobethelargestinarea,subsequently{101}face,{110}faceand{002}face.TABLEⅠ.CALCUTIONRESULTSOFBFDHMODELhklMultiplicitydhklTotalfacetareaTotalfacetarea/{011}444.9590.9763.49{002}234.399.0406.309{101}427.8626.8718.75{110}427.1116.4111.45MorphologypredictionbyAEmodelTheresultsofattachmentenergycalculationswerereportedinTableⅡ.Basedonattachmentenergymodel,theMIsequenceisbasedontheassumptionthatthegrowthratesoffacesareproportionaltoattachmentenergy.Hence,thegreaterattachmentenergy,thefasterthecorrespondingfacegrowsandthesmalleritsmorphologicalimportance.Oncetherelativegrowthratesofthesignificantfacesareknown,amacroscopicimageofthecrystalmorphologycanbepostulated.CrystalmorphologypredictedbyAEmodelcanbededucedandwasshowninFigure3b.ThemorphologyFigure3apredictedbyBFDHmodelisapproximatelyconsistentwiththatpredictedAEmodel.Themaindifferencesexistindisappearanceof{002}faceinAEmodel.FromTableⅡandFigure3b,itcanbeseenthatthereisagoodcorrelationbetweengrowthfaceareaandtheattachmentenergyofthedominantface.Themorphologypredictedisplatelike,suggestingthatasinglefaceisindeeddominatingtheoverallcrystalgrowth.Inthesecases,themostdominantfacehasanattachmentenergywhoseabsolutevalueismuchlowerthanthatfortheotherfaces,andtherelativegrowthrateisnotablysmaller.Hence,onefacedominatesthecrystalgrowth.TABLEⅡ.CALCULATIONRESULTSOFAEMODELhklMultiplicitydhklEatttotalTotalfacetareaTotalfacetarea/Å/kcal/mol/Å2/Å2{011}444.9574.1116130076.80{101}427.8148.74285020.40{110}427.11167.758782.799abFigure3.PredictedcrystalmorphologyaBFDHmodel,bAEmodelComparisonofpredictedmorphologywithexperimentalgrowthcrystalThemorphologicalsimulationswereconfrontedwithexperimentaldataobtainedfromsolutiongrowncrystals.Thecrystalmorphologywasassessedbyopticalmicroscopy.MorphologicalsketchwasshowninFigure4.Figure4.ExperimentalcrystalmorphologyThepredictedmorphologybasedupontheAEmodelandBFDHmodelcomparesfavorablywiththeexperimentalmorphology.Themaindifferencebetweentheexperimentalmorphologyandpredictedmorphologyisthat{002}facedisappearsintheexperimentalmorphology,whichismoreconsistentwiththemorphologypredictedbyAEmodelthanbyBFDHmodel.Despitedifferencebetweenpredictedandexperimentalmorphology,itshouldberememberedthat,overall,thepredictedandsolutiongrownmorphologyarerathercomparable.Byfurtheranalyzingmorphologypredictedbytwomodelsandexperimentalmorphology,itcanbeseenthat{011}faceisthemostdominantinarea.Thiswasperhapsduetothefactthatthisfacehadsmallergrowthpromotinghydrogenbondingcomponentinvolvedintheintermolecularinteractionsinvolvedinitsattachmentenergy,incontrasttothoseonthe{110},{002},{101}faces.SurfacechemistryvisualizationfortheimportantmorphologicalformsThesurfacechemistryofthethreemainsurfaceswasinvestigatedtoprovidebetterunderstandingtointeractionandrecognitionamonglysozymethethreefaces{011},{101},and{110}expecteddominatethecrystalhabitasrevealedfromtheAEmorphologicalprediction.a011b101c110Figure5.Cleavagestructureofmainexposurecrystalplanea{011},b{101},c{110}TheresultsaresummarizedinFigure5.The{011}surfaceFigure5awasfoundtoberoughonthemolecularlevel.Incontrastto{101}crystalface,chemicalgrouprevealingisbigger,whichcanbringaboutagreatersterichindrancetoholdbackpackingoflysozymemoleculeinsolutionin{011}face.Asaresult,thegrowthrateof{011}crystalfaceiscomparativeslow,showinghighmorphologicalimportance.Examinationofthe{101}surfaceFigure5brevealsasmoothersurfacecomparedwith{011}faceonthemolecularlevel.Thechemicalgrouprevealingissmall,whichallowslysozymemoleculeeasilytopackin{101}surface,leadingto{101}surfacehaverapidgrowthrate.The{110}surfaceFigure5cwasfoundtobeveryopenandroughonthemolecularlevelrevealingadiagonalpatterndownthroughthesurfacewithalternatingorientationsofthelysozymemolecule.Thepatternproducedwasdiagonalinnaturewithhydrogenbondinganddonororacceptoratomswereactiveonthesurfaceforbindingoncomingmolecules.Inaddition,withthissurface,bothaminogroupandhydroxylcomponentsoflysozymemoleculewerefoundtoberevealabletopossiblebindingwithappropriatemolecules.Asaresult,thegrowthrateof{110}surfaceisthegreatest,showingthesmallestmorphologicalimportance.CONCLUSIONSThecrystalmorphologyoforthorhombiclysozymeispredictedusingAEmodelinconjunctionwithBFDHmodel.Accuratemodelingandmorphologypredictionofthiscrystalareachieved.Themorphologypredictedbytwomodelsisapproximatelyconsistent.ThemorphologypredictedbyAEmodelismoreconsistentwiththemorphologyofcrystalsgrownfromsolutionthanBFDHmodel.Themaincrystalfaces{011},{101}and{110}areobservedanddominantinmorphologypredictedbyAEmodel.Bycleavingthesedominantcrystalfaces,surfacechemistryvisualizationandtheoreticalanalysisbasedoninteractioninintramoleculesorintermoleculesfortheimportantmorphologicalformsareperformed.TheresultindicatesthatsterichindranceeffectandHbandinteractionplayscriticalrolefortheplatelikemorphologyoforthorhombiclysozyme,whichprovidesaimportantinstructioninmolecularlevelforpreparationofhighqualitylysozymecrystal.ACKNOWLEDGMENTThisworkwasfundedbytheNationalNaturalScienceFoundationofChinaNo.20806053,DoctoralFundofMinistryofEducationofChinaNo.200800561029andChinaPostdoctoralScienceFoundationNo.20080440677REFERENCES1J.C.Givand,R.W.Rousseau,P.J.Ludovice,CharacterizationofLisoleucinecrystalmorphologyfrommolecularmodeling,J.Cryst.Growth,vol.194,pp.228–238,1998.2J.Prywer,ExplanationofsomepeculiaritiesofcrystalmorphologydeducedfromtheBFDHlaw,J.Cryst.Growth,vol.270,pp.699–710,2004.3G.Pfefer,R.Boistelle,Theoreticalmorphologyofadipicacidcrystals,J.Cryst.Growth,vol.208,pp.615–622,2000.4P.Hartman,TheattachmentenergyasahabitcontrollingfactorI.Theoreticalconsiderations,J.Cryst.Growth,vol.49,pp.145–156,1980.5S.David,C.Coombes,A.Richard,CalculationofAttachmentEnergiesandRelativeVolumeGrowthRatesasanAidtoPolymorphPrediction,Cryst.GrowthDes,vol.5,pp.879–885,2005.6C.M.Li,K.L.Kirkwood,G.D.Brayer,TheBiologicalCrystallizationResourceFacilitatingKnowledgeBasedProteinCrystallizations,Cryst.GrowthDes,vol.7,pp.2147–2152,2007.7S.X.Lin,A.McPherson,R.Giegé,GoodCrystals,StillaChallengeforStructuralBiology,J.Cryst.Growth,vol.7,pp.2124–2125,2007.8A.Warke,C.Momany,AddressingtheProteinCrystallizationBottleneckByCocrystallization,J.Cryst.Growth,vol.7,pp.2219–2225,2007.9M.W.Elaine,J.R.Kevin,J.M.Stephen,AMolecularDynamicsStudyofSolventandImpurityInteractionontheCrystalHabitSurfacesofεCaprolactam,Langmuir,vol.14,pp.5620–5630,1998.10N.Kubota,J.W.Mullin,Akineticmodelforcrystalgrowthfromaqueoussolutioninthepresenceofimpurity,J.Cryst.Growth,vol.152,pp.203–208,1995.11H.C.Koolman,R.W.Rousseau,EffectsofisomorphiccompoundsonthepurityandmorphologyofLisoleucinecrystals,AIChEJournal,vol.42,pp.147–153,1996.12J.Z.Chen,N.F.Zhuang,S.K.Lin,Theoreticalmorphologyandgrowthhabitofrubidiumhydrogenselenatecrystals,J.Cryst.Growth,vol.205,pp.584–589,1999.13Y.Matsuzukia,T.Kubotab,X.Y.Liua,AFMobservationofthesurfacemorphologyandimpurityeffectsonorthorhombicheneggwhitelysozymecrystals,J.Cryst.Growth,vol.242,pp.199–208,2002.14http//www.rcsb.org/pdb/home/home.do
编号:201311191259503767    大小:884.24KB    格式:PDF    上传时间:2013-11-19
  【编辑】
1
关 键 词:
外文翻译 外文资料
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:39次
tuzhidiguo上传于2013-11-19

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

外文翻译   外文资料  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5