会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

数学建模论文-最佳天然肠衣原料搭配方案模型.doc数学建模论文-最佳天然肠衣原料搭配方案模型.doc -- 6 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

1最佳天然肠衣原料搭配方案模型摘要最佳天然肠衣原料搭配方案数学建模是一个典型的优化资源分配问题,重点是确定变量,确定好变量后,将变量组合起来,建立目标函数和约束条件,从而求解问题。最佳天然肠衣原料搭配方案数学建模是设计生产成品捆数最多的原料搭配方案。先把原料按长度分档,以0.5米为一档,如33.4米按3米计算,3.5米3.9米按3.5米计算,其余的依此类推。设每档对应的根数为变量xi,按成品规格表的要求建立模型使装出的捆数最多,以此建立线性规划模型用lindo软件求解。并考虑食品保鲜,方案要在30分内产生。对于问题1给定的原料一定,怎样搭配原材料才能使装出的捆数最多先根据成品规格表中的最短长度和最长长度把把原料中的不同档分为3级,即36.5米、713.5米、1425.5米三级。用三级所分别对应的原料装出的成品捆数yi的总和z的最大值的建立目标函数,即maxzy1y2y3,再用成品的总长度和总根数与不同档的根数xi确定约束条件,以此建立一个线性规划模型,用lindo软件求解。对于问题2成品捆数相同的方案,怎样搭配原材料才能使最短长度最长的捆数最多即对与成品总捆数相同时,求解问题1中的第3级捆数的最大值。用第3级所对应的原料装出的成品捆数总和的最大值来建立目标函数,即maxzy3,再用第3级成品的总长度89y3和总根数20y3与不同档的根数xi确定约束条件,以此建立一个线性规划模型,用lindo软件求解。对于问题3当总长度允许有0.5米的误差,总根数允许比比标准少1根时,怎样搭配原材料才能使装出的捆数最多目标函数同问题1,即maxzy1y2y3,在问题1的基础上考虑约束条件中的总长度的范围和总根数是否减少1根,与不同档的根数xi确立约束条件,以此建立一个线性规划模型,用lindo软件求解。对于问题4原料剩余可以降级使用,即1425.5米剩余的可用于713.5米,713.5米剩余的可用于36.5米,怎样搭配原材料才能使装出的捆数最多目标函数同问题1,即maxzy1y2y3,约束条件在上述问题的基础上,对应总长度和总根数还要加上上一级所剩余的数量,以此建立一个线性规划模型,用lindo软件求解。最后,我们分析了上述各种策略的弊端,并对模型进行简化,以此提出来最佳的方案,使本文的模型结构简单,便于理解,算法复杂度低,并且可扩展性高,较好地解决了本文中提出的问题,而且可以进一步推广到相关领域问题的求解。建立线性规划模型可以优化资源,用最少的原料生产出最多的产品,充分节约资源,有利于社会主义可持续发展建设目标的实施。关键字分档根数捆数lindo线性规划2一、问题重述原料按长度分档,以0.5米为一档,如33.4米按3米计算,3.5米3.9米按3.5米计算,其余的依此类推。表1是几种常见成品的规格,长度单位为米,∞表示没有上限,取25.5米。表1成品规格表最短长度最大长度根数总长度36.52089713.588914∞589为了提高生产效率,公司计划改变组装工艺,先丈量所有原料,建立一个原料表。表2为某批次原料描述。表2原料描述表长度33.43.53.944.44.54.955.45.55.966.46.56.9根数4359394127283421长度77.47.57.988.48.58.999.49.59.91010.410.510.9根数2424202521232118长度1111.411.511.91212.412.512.91313.413.513.91414.414.514.9根数3123225918253529长度1515.415.515.91616.416.516.91717.417.517.91818.418.518.9根数3042284245495064长度1919.419.519.92020.420.520.92121.421.521.92222.422.522.9根数526349352716122长度2323.423.523.92424.424.524.92525.425.525.9根数060001根据以上成品和原料描述,设计一个原料搭配方案,工人根据这个方案照方抓药进行生产。结合题意提出问题如下3(1)对于给定的一批原料,怎样搭配原材料才能使装出的捆数最多(2)对于成品捆数相同的方案,怎样搭配原材料才能使最短长度最长的捆数最多(3)当总长度允许有0.5米的误差,总根数允许比标准少1根时,怎样搭配原材料才能使装出的捆数最多(4)剩余材料可以降级使用时,怎样搭配原材料才能使装出的捆数最多二、问题分析2.1背景分析天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。根据成品和原料描述,设计一个原料搭配方案,工人根据这个方案照方抓药进行生产。这是一个典型的优化资源分配问题,重点是确定变量,确定好变量后,将变量组合起来,建立目标函数和约束条件,从而求解问题。建立线性规划模型可以优化资源,用最少的原料生产出最多的产品,充分节约资源,有利于社会主义可持续发展建设目标的实施。2.2问题分析问题1对于给定的一批原料,装出的成品捆数越多越好。原材料是一定的,而要使装出的成品捆数最大,就可以令成品总捆数的最大值maxzy1y2y3为目标函数,令不同档所对应的根数为变量,再用总长度和总根数与不同档所对应的根数确定约束条件,以此建立一个线性规划模型。问题2对于成品捆数相同的方案,最短长度最长的成品越多,方案越好。就是成品捆数不变使,求解第3级捆数的最大值,因此建立目标函数为maxzy3,再用第3类的总长度89y3和总根数5y3与第3级所对应的不同档的根数确定约束条件,以此建立一个线性规划模型。问题3为提高原料使用率,总长度允许有±0.5米的误差,总根数允许比标准少1根。当总长度允许有0.5米的误差,总根数允许比比标准少1根时,怎样搭配原材料才能使装出的捆数最多在问题1的基础上考虑约束条件中的总长度的范围和总根数是否减少1根,和每档的根数建立约束条件,目标函数同问题1,以此建立一个线性规划模型。问题4某种规格对应原料如果出现剩余,可以降级使用。如长度为14米的原料可以和长度介于713.5米的进行捆扎,成品属于713.5米的规格。目标函数同问题1,约束条件在前面问题的基础上,对应总长度和总根数还要加上上一级所剩余的数量,以此建立一个线性规划模型。三、模型假设(1)假设原材料都是新鲜的,没有变质。(2)假设生产出来的成品都是合格的,没有废品。(3)假设工人都是按正常工艺生产,没有不良情绪。(4)假设生产严格按照天然肠衣加工良好操作规范(GBT226372008)。四、符号说明z装出的成品总捆数(单位捆)y136.5米内原材料装出的成品捆数之和(单位捆)y2713.5米内原材料装出的成品捆数之和(单位捆)4y31425.5米内原材料装出的成品捆数之和(单位捆)xi3米25.5米原料按长度分档,以0.5米为一档,装出的成品总捆数中每档所对应的总根数(单位根),如x1装出的成品总捆数中3米所对应的总根数,x2装出的成品总捆数中3.5米所对应的总根数,x3装出的成品总捆数中4米所对应的总根数,其余的以此类推。五、模型的建立与求解5.1问题1模型的建立与求解问题1对于给定的一批原料,怎样搭配原材料才能使装出的捆数最多表3成品规格表最短长度最大长度根数总长度36.52089713.588914∞589根据成品规格表中的最短长度和最长长度把把原料中的不同档分为3级,即36.5米、713.5米、1425.5米三级。各级对应的捆数分别为y1,y2,y3,要使装出的捆数最多,就是求y1y2y3的最大值,由此可以确定目标函数为Maxzy1y2y3。把原料按长度分档,以0.5米为一档,如33.4米按3米计算,3.5米3.9米按3.5米计算,其余的依此类推。设每档对应的用于生产成品的根数xi为变量,因此,可以把表2简化为下表表4所示表4原料描述简化表长度33.544.555.566.5根数4359394127283421长度77.588.599.51010.5根数2424202521232118长度1111.51212.51313.51414.5根数3123225918253529长度1515.51616.51717.51818.5根数3042284245495064长度1919.52020.52121.52222.5根数526349352716122长度2323.52424.52525.5根数060001由上表可以知道不同档所消耗原料的根数xi不能大于该档原材料的根数,且不能小于0,如0x143,0x259,0x339等。结合表3、表4可以得出每级所对应的总长度89yi和总根数不大于原材料的总长度和总根数。因此,建立数学模型如下所示Maxzy1y2y3st89y13x13.5x24x34.5x45x55.5x66x76.5x889y27x97.5x108x118.5x129x139.5x1410x1510.5x1611x1711.5x1812x1912.5x20132113.5x2289y314x2314.5x2415x2515.5x2616x2716.5x2817x2917.5x3018x3118.5x3219x3319.55x3420x3520.5x3621x3721.5x3822x3922.5x4023.5x4125.5x4220y1x1x2x3x4x5x6x7x88y2x9x10x11x12x13x14x15x16x17x18x19x20x21x225y3x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x420x1430x2590x3390x410x5270x6280x7340x8210x9240x240x11200x12250x13210x14230x15210x16180x17310x18230x19220x20590x21180x22250x23350x24290x25300x26420x27280x28420x29450x30490x31500x32640x33520x34630x35490x36350x37270x38160x39120x4020x4160x421.用lindo软件解得LPOPTIMUMFOUNDATSTEP1OBJECTIVEFUNCTIONVALUE1191.6348VARIABLEVALUEREDUCEDCOSTY114.6000000.000000Y241.6348300.000000Y3135.3999940.000000X143.0000000.000000X259.0000000.000000X339.0000000.000000X441.0000000.000000X527.0000000.000000X628.0000000.000000X734.0000000.000000X821.0000000.000000X924.0000000.000000X1024.0000000.000000X1120.0000000.000000X1225.0000000.000000X1321.0000000.000000X1423.0000000.000000X1521.0000000.000000X1618.0000000.000000X1731.0000000.000000X1823.0000000.000000X1922.0000000.000000X2059.0000000.000000X2118.0000000.000000X2225.0000000.000000X2335.0000000.000000X2429.0000000.000000X2530.0000000.000000X2642.0000000.000000X2728.0000000.000000X2842.0000000.000000X2945.0000000.000000X3049.0000000.000000X3150.0000000.0000006X3264.0000000.000000X3352.0000000.000000X3463.0000000.000000X3549.0000000.000000X3635.0000000.000000X3727.0000000.000000X3816.0000000.000000X3912.0000000.000000X402.0000000.000000X416.0000000.000000X421.0000000.000000由该程序结果可知maxz191.6348捆,取整数为maxz191捆。由此可知对于给定的一批原料,按该程序结果搭配原材料能使装出的捆数最多,最多捆数为191捆。5.2问题2模型的建立与求解问题2对于成品捆数相同的方案,怎样搭配原材料才能使最短长度最长的捆数最多成品捆数相同,要使最短长度最长的捆数最多,也就是说要使第三极的成品捆数y3最多,由此可以建立目标函数为Maxzy3,变量为第三极所对应的不同档的用于生产成品的根数xi,由第1问分析可以建立目标函数Maxzy3与变量xi之间的约束条件,建立模型如下Maxzy3st89y314x2314.5x2415x2515.5x2616x2716.5x2817x2917.5x3018x3118.5x3219x3319.5x3420x3520.5x3621x3721.5x3822x3922.5x4023.5x4125.5x425y3x23x24x25x26x27x28x29x30x31x33x32x34x35x36x37x38x39x40x41x420x23350x24290x25300x26420x27280x28420x29450x30490x31600x32640x33520x34630x490x36350x37270x38160x39120x4020x4160x421.用lindo软件解得LPOPTIMUMFOUNDATSTEP21OBJECTIVEFUNCTIONVALUE1135.4000VARIABLEVALUEREDUCEDCOSTY3135.3999940.000000X2335.0000000.000000X2429.0000000.000000X2530.0000000.000000X2642.0000000.000000X2728.0000000.000000X2842.0000000.000000X2945.0000000.000000X3049.0000000.000000X3150.0000000.000000X3264.0000000.000000X3352.0000000.000000X3463.0000000.0000007X3549.0000000.000000X3635.0000000.000000X3727.0000000.000000X3816.0000000.000000X3912.0000000.000000X402.0000000.000000X416.0000000.000000X421.0000000.000000由该程序结果可知maxz135.4000捆,取整数为maxz135捆。由此可知对于成品捆数相同的方案,按该程序结果搭配原材料能使最短长度最长的捆数最多,最多捆数为135捆。5.3问题3模型的建立与求解当总长度允许有0.5米的误差,总根数允许比标准少1根时,怎样搭配原材料才能使装出的捆数最多根据总长度允许有0.5米的误差,可以把表1简化为下表所示表5成品规格调整表最短长度最大长度根数总长度36.520890.5713.58890.514∞5890.5要使装出的捆数最多,就可以用捆数最多来建立目标函数,即Maxzy1y2y3,变量为各级所对应的不同档的用于生产成品的根数xi,由总长度允许有0.5米的误差,可知总长度要在890.5米。由总根数允许比标准少1根,可以把这个问题分为4种情况考虑,分别是(1)总根数不减少,即总根数为20y18y25y3(2)总根数比标准少1根,第1级比标准少1根为20y11,第2级为8y2,第3级为5y3(3)总根数比标准少1根,第2级比标准少1根为8y21,第1级为20y1,第3级为5y3(4)总根数比标准少1根,第3级比标准少1根为5y31,第1级为20y1,第2级为8y2。这4种情况结合上述分析,可以分别得到下面4种模型。5.3.1总根数不减少,即总根数为20y18y25y3。Maxzy1y2y3st(890.5)y13x13.5x24x34.5x45x55.5x66x76.5x8890.5y1890.5y27x97.5x108x118.5x129x139.5x1410x1510.5x1611x1711.5x1812x1912.5x2013x2113.5x22890.5y2890.5y314x2314.5x2415x2515.5x2616x2716.5x2817x2917.5x3018x3118.5x3219x3319.5x3420x3520.5x3621x3721.5x3822x3922.5x4023.5x4125.5x42890.5y320y1x1x2x3x4x5x6x7x88y2x9x10x11x12x13x14x151x16x17x18x19x20x21x225y3x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x
编号:201311211213579156    大小:1.80MB    格式:DOC    上传时间:2013-11-21
  【编辑】
6
关 键 词:
专业文献 学术论文 精品文档 数学建模
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:21次
liyun上传于2013-11-21

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

专业文献   学术论文   精品文档   数学建模  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5