trends in electro-optical communication systems:光电通信系统的发展趋势_第1页
trends in electro-optical communication systems:光电通信系统的发展趋势_第2页
trends in electro-optical communication systems:光电通信系统的发展趋势_第3页
trends in electro-optical communication systems:光电通信系统的发展趋势_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1TRENDSINELECTRO-OPTICALCOMMUNICATIONSYSTEMSDJANKHOECobraInstitute,TechnicalUniversityEindhovenP.O.Box5135600MBEindhovenTheNetherlandsE-mail:g.d.khoetue.nlHENRIEVANDENBOOMCobraInstitute,TechnicalUniversityEindhovenP.O.Box513,5600MBEindhoven,TheNetherlandsE-mail:h.p.a.v.d.boomtue.nlThispapergivesanoverviewofpresentstatusandfuturetrendsinElectro-opticalcommunicationsystemsandnetworks.WithinthearchitectureofElectro-opticalcommunicationnetworks,threeareaswithadifferenttypeofresearchfocuscanbedistinguished;thelonghaullinks,thecross-connectsandtheaccessnetworkstothesubscribers.IntroductionTelecommunicationsnetworksarethelargestandmostcomplexartificialstructuresthehumanracehaseverbuiltandhavegraduallybecomeanessentialsocialandeconomicinfrastructure.Theworld-widedemandforcommunicationhasconsistentlypushedthetransportspeedfrommerely34Megabit/sintheearlyeightiesto10Gigabitpersecondtoday,i.e.agrowthofafactor10eachsevenyears.Thegrowingdemandforcommunicationismainlyduetothetrendtowardsglobalisationandtheevolutionofthesocialstructureofoursociety.Presently,wewitnessarevolutiontowardsaglobalinformationsociety,whichismostclearlyvisiblebytheveryrapidintroductionoftheInternet,andofwirelesscommunicationequipment.Traditionally,thetelecommunicationsindustryonlyprovidedlinesconnectingusers.Inthenextmillennium,telecommunicationsandinformationservicesareexpectedtoevolvetowardsmultimediaserviceswhichwillbecharacterisedbyintegrationofthetraditionallyseparatedareasoftelecommunications,computers,computernetworks,andconsumerelectronics.Theenvisionedinformation-sharingsystemsforthenextmillenniumwillalmostcertainlyrequireaseveralordersofmagnitudehighernetworkcapacityandflexibilitythancurrentlyavailable.ThisdevelopmentwillpushthedemandfornetworkcapacitywellintotheTerabit/srange.Itisevidentthatthistransportcapacityrequiresexplorationsofnewultimatesinthetechnologicalplatformofthecommunicationinfrastructuretoovercomelimitswhichsoonwillbeimposedbyelectronicstechnology,whichdevelopsataspeedofafactor10in12years,i.e.approximatelyhalfthespeedoftheincreaseinthedemandforcommunicationcapacity.Opticalcommunicationisemergingasoneofthemostimportanttechnologiesofthefuturetoservetheworld-widedemandforcapacityincommunicationbyprovidingthetechnologyforprocessingthehugeamountofsignalsinvolved.Inprinciple,opticaltechniquesofferlow-losstransmissionoverthousandsofkilometres.Moreover,thebandwidthofanopticalfibreallowsthetransmissionofmanydifferentwavelengthssimultaneously.ItisthusenvisionedthatcommunicationnetworkswilleventuallyreachacapacitybeyondtheTerabit/slevel,thuscreatingmanynewchallengesfortherequiredphotoniccomponentsandnetworkinfrastructure.Withinthearchitectureofcommunicationtransportnetworks,threeareaswithadifferenttypeofresearchfocuscanbedistinguished;thelonghaullinks,thecross-connectsandtheaccessnetworkstothesubscribers(seeFig.1).A.B.SmoldersandM.P.vanHaarlem(eds.)PerspectivesonRadioAstronomyTechnologiesforLargeAntennaArraysNetherlandsFoundationforResearchinAstronomy-1999LonghaullinksCross-connectsCross-connectsAccessnetworksFigure1:TelecommunicationnetworkarchitectureThechallengeinthehighestleveloftelecommunicationarchitecture,thelonghaullinks,ishowtoovercomelimitationsimposedbythefibreattenuation,non-linearitysanddispersion.Long-termresearchemphasisesultrafastandhigh-throughputphotonicconceptstoleadthetransmissionandswitchingcapacitytowardstheTerabit/sdomain.Opticalcross-connects,coverstopicsintheintermediatelevelsofthetelecommunicationarchitecture.Thechallengeistodeveloptelecommunicationnodesthathavemorethroughput,aremorereliableandhavemorespeed.Amainchallengeattheleveloftheaccessnetworksisthedevelopmenttowardsbi-directionalbroadbandaccesstothesubscribers.Costaspectsplayaveryimportantrolehere.2.LonghaullinksIntheareaoflonghaullinksopticalamplifiers,WavelengthDivisionMultiplexing(WDM)andOpticalTimeDomainMultiplexing(OTDM)areimportantresearchissues.Moreover,limitationsimposedbythetransmissionmediumarealsosubjectofexplorations.Cancellationofdispersioneffectshasencouragedresearcherstoinvestigatethepotentialofsolitonpropagation.Phaseconjugationhalfwayatransmissionpathisanotherwayofcancellingdispersion.AbetterunderstandingoftheinteractionsbetweenthetransmissionmediumandtheElectro-magneticlightwaveisrequiredtoproceedtowardsaninfrastructure,whichprovidesthebestconditionsforanultrashortpulsetopropagate.2.1WavelengthDivisionMultiplexing,WDMOpticalfibercommunicationlinksarewidelyusednowadaysforlongdistancecommunications,connectingnodesinopticalnetworks.Toincreasethetransmissioncapacityperfiber,WavelengthDivisionMultiplexing(WDM)hasbeenintroduced,usinganumberofdifferentwavelengthstocarrydifferentdatasignals.Atpresent,transmissionsystemswithaspeedof10Gigabitpersecondarebeingpreparedforcommercialuse.Atthesametime,operationalsystemsatthelevelof2.5Gigabitpersecondarealsobeingupgradedbymeansofwavelengthmultiplexing,creatingasystemwitha286capacityof10or20Gigabitpersecondusing4or8wavelengthsinparallel.Researchersareexploringhigherspeedatonewavelengthaswellastheoptionofmorewavelengthsinparallel,includingconceptswherehighspeedsignalscanbetransferredfromonewavelengthtotheother,usingphotonicwavelengthconverters.TypicalexamplesofWDMsystemsaredemonstrationsbyresearchersoftheNipponTelegraphandTelephone(NTT)Companywhoreportedonanexperimentatatotalcapacitylevelof1.4Tb/s(Terabitpersecond),using200Gb/s(Gigabitpersecond)inthetimedomainand7wavelengthsinparallel1anda2.6Tb/susing132channelswith20Gb/stransmissioncapacity2.Intheworld,Japaneseresearchersareleadingintheseareas.AnotherexampleisademonstrationbyresearchersofBellLaboratories,LucentTechnologies,showing206wavelengthchannelsinparallel.Today,thestrategyforWDMlightsourcesistouselaserdiodeswithdifferentwavelengthsforeachchannel.Novelconceptsformulti-wavelengthlightsourcesmaybeexplored.Breakthroughsinplanardeviceconceptsandtechnologiesareneededtoovercometheproblemsofaccumulationofcross-talk,noiseandsignaldistortion,occurringinlargenetworks.Wavelengthconversionanditsroleinsignalregenerationhavetobefurtherexplored.Novelamplifierconceptsandmaterialshavetobedevelopedinordertobroadentheusablewavelengthwindowof30nm,whichispresentlysetbytheErbiumDopedFibreAmplifier(EDFA).Novelhostglasscombinationsshouldbeexploredandcombinedwithsuitabledopingspecies.Generally,novelmethodsforthelightamplificationintheentirewavelengthsareaofferedbythefibreshouldbeexplored.2.2OpticalTimeDomainMultiplexing,OTDMOngoingprogressinphotonictechnologieswillbeexploitedtofurtherexpandcapacityandflexibilityinthewavelengthdomain,involvinghighdensitywavelengthdivisionmultiplexing(HD-WDM)techniquesandwavelengthconversiontechniques.Photonictechnologieswillalsobeexploitedtoenhancetransmissionandprocessingspeedinthetimedomain,involvingallopticalsignalregenerationandopticaltimedomainmultiplexing(OTDM)anddemultiplexingatafemtosecondtimescale.ThiswillleadtowardsthepossiblerealisationofanallopticaltransportinfrastructurewithaterabitcapacityapproachingthefundamentalmaximumfibrecapacityimposedbyHeisenbergslimitonthetime-bandwidthproduct.Thetransportsystembetweenthenodeshastobenefitfromultrafastphotonicdevicesemergingfromresearchinmaterialsanddevices.Optionsforveryhighbitratetransmissionsystemsinwhichthesignalsaremultiplexed,demultiplexedtoalowerbitrateandregeneratedintheopticaldomainshouldbeexplored.Theconceptsshouldaimattransmissionspeedsofatleast40Gigabitpersecond.Whencombinedwithwavelengthdivisionmultiplexing(WDM),thetotalsystemcapacitycaneasilyexceedtheTerabitpersecondlevel.Keyelementsintimemultiplexedsystemsarethegenerationofultrashortpulses,multiplexers,demultiplexersandtimingextractors.Usingthosekeymodules,datacanbetransmitted,multiplexedtoahigherbitrate,regeneratedandreceived.Forthemanipulationofbitratesandtiming,thepotentialsofusingharmonicsandsubharmonicsincombinationwithmodelockedlaserdiodes(MLLD)andfourwavemixing(FWM)insemiconductoropticalamplifierscandeexplored.Inprinciple,ithasbeenshownthattheMLLDcanbelockedtoaninjectedsequenceofshortopticalpulses,whichoperatesinitssubharmonics.IthasalsobeenshownthattheMLLDcanbelockedtothesubharmonicsofaninjectedsequenceofshortopticalpulses.Largesubharmonicnumberswillopenwaystoallowopticalpulseswithhighrepetitionratestobecreatedfrommuchlowerrepetitionratesandalsotoextractanopticalclocksignalatverylowratesfromanincominghighbitrateopticalsignal.Thecombinationofdifferentfrequenciescanalsobeusedtoexploreopticaldomainmultiplexinginsemiconductoropticalamplifiers(SOA).Opticalmultiplexingmethodsusingthefourwavemixing(FWM)effectsinSOAshasbeenshown.ApossibilityistomixthelowbitratesignalofonewavelengthwithahighfrequencypulsetrainofanotherwavelengthintheSOA,usingaWDMdeviceattheinputoftheSOA.TheFWMintheSOA287willcreateamodulatedsignalattherateofthehighfrequencytrain.AsindicatedearlierOTDMtransportsystemsneedgeneratorsforultrashortopticalpulsesandopticaldomaindemultiplexers.Onewaytogenerateultrashortopticalpulsesisbytheexternalmodulationofacontinuouswaveopticalsourcewithamodulator.Fastmodulatorsshouldbeinvestigatedintheareaofsemiconductormaterialsanddevices.OpticaltimedomaindemultiplexingcanberealisedbymeansofaTOAD(TerahertzOpticalAsymmetricDemultiplexer).TheTOADiscommonlyrealisedbymeansofafibrelooptheendsofwhicharecoupledviaanopticalcoupler.Opticalsignalscoupledintothisloopwillbereflected.However,thereflectionpropertiescanbedisturbedbyinsertingaSOAatanasymmetricpositionintheloop.AprobesignalpassingtheSOAwilldisturbthesymmetryoftheloopandaparticularsignalwillthusbepassedandnotreflected.Experimentshavebeencarriedouttodemultiplex40Gbit/stofour10Gbit/sopticalsignals.SemiconductorversionsofthisTOADconfigurationandtocombinemanyTOADslockedtoasingleringlaserclockdevicewillbeinvestigated.3.CrossconnectsOpticalfibercommunicationlinksarewidelyusednowadaysforlongdistancecommunications,connectingnodesinopticalnetworks.Toincreasethetransmissioncapacityperfiber,WavelengthDivisionMultiplexing(WDM)hasbeenintroduced,usinganumberofdifferentwavelengthstocarrydifferentdatasignals.Routingandswitchinginthenodesisperformedelectricallysoineachnodeofthenetworkallopticalsignalshavetobeconvertedtotheelectricaldomainandviseversa.ElectronictelecommunicationnodeswillnotbecapabletoswitchandroutefutureTerabit/sdatastreams.PhotonicroutingandswitchingnodesmustbedevelopedcapabletohandleWDMandOTDMmultiplexedsignals.Photonicswitchingdeviceswillthereforebeusedinmanyfunctionalmodulesinthenetwork,forsignalmodulation,regeneration,multiplexingandrouting.Physicalphenomena,whichcanleadtoultrafastwavelengthconversion,areasubjectforinvestigation.Inparallel,thephysicalpropertiesofthetransmissionmediumhavetobeexploredmoreaccuratelyandhavetobetunedwherepossible.Integratedopticalcross-connectchipswhichconsistsofmultiplexers,switchesanddemultiplexersarebeingdevelopednowandwillbecommerciallyusedoverafewyears.Themanagementofamulti-wavelengthtelecommunicationinfrastructureisaseriouschallenge.Newapproachesshouldrecognisethattheprobleminvolvesgeographicallydistributedandcomplexcontrolpointsandthereforedealswithbasicproblemsinnetworkarchitectureandmathematicalmodellingofthenetworkelements.Whenopticalnetworksarebecomingmoreandmorecomplex,theuseofopticallaserneuralnetworknodescanbeaninterestingsolution.3.1LaserNeuralNodesTheLaserNeuralNetwork(LNN)providesinterestingoptionsfortherealisationofanopticalnetworknode.Neuralnetworksareintrinsicallysuitedforparalleloperation3.Adedicatedhardwareconfigurationoperatingintheopticaldomainandtheuseoftheultrafastphotoniccomponentssectionsisexpectedtoofferfurtherimprovementsinthespeedandcapacityoftelecommunicationnetworks.Generally,afirstadvantageofopticalconfigurationsisthatlightbeamscancrosseachotherinfreespacewithoutinteracting.Inaddition,allthreedimensionscanbeused,whichreducestheproblemofinterconnectivityandallowsforlargerandmorecomplexconfigurations.Finally,opticaldomainsystemsarepotentiallymuchfasterthanelectricaldomainsystems.Weightingandsummationintheopticaldomaincanbedoneveryfast,whilespeedlimitationscausedbychargebuild-up,likeinelectronicbaseddevices,arenotpresent.Wefirstexploredthepotentialsofasemiconductorlaserasakeyelementintheopticalneural288network,seefig2.Thelongitudinalmodesofthelaserareusedtorepresentneurons,andcontrolledopticalfeedbackviaanexternalcavityisimposedtoeachofthelongitudinalmodes.Abulkgratingisusedtoseparatethemodesspatiallyintheexternalcavity.Theopticalpowercontainedineachofthemodesrespondsnonlinearlytothedegreeofopticalfeedbackandtheconfigurationthusbehaveslikeaneuralnetwork.Controlledopticalfeedbackisprovidedviaamatrixofliquidcrystalelements,whichisinsertedintheexternalcavityofthelaser.Onedimensionofthematrixisusedtoinputdataandtheotherdimensionisusedtoinsertweightfactors.Inprinciple,thelongitudinalmodepatternsrespondveryfastonchangesinfeedback,becausethephenomenonisbasedonintrabandeffects.Figure2:LaserNeuralNetwork.Thecurrentexperimentalconfigurationisonlycapableofhandlinginput-outputproblemswithsmalldimensions.Furthermore,theliquidcrystalmatrixlimitsthespeedofoperation.StrategyforfutureresearchistofindwaystofurtherexpandtheLNNwithalargermatrix,toimprovethespeedandtoinvestigatehowtheLNNcanbeimplementedasanodeintelecommunicationnetworks.Afirstchallengingstepistoinvestigatehowthespeedofoperationcanbeimproved.Itisnecessarytoreplacetheliquidcrystalmatrixwithafasterdeviceandtoreducethelengthoftheexternalcavity.Next,ahigh-speedmatrix,whichcanprovidecontrolledfeedbacktothelongitudinalmodesofthelaser,isrequired.Thelengthoftheexternalcavitywillbereducedwhenthebulkgratingusedinthecurrentexperimentisreplacedbyaplanarconfiguration.AshorterexternalcavitywillallowfasteroperationoftheLNN.LNNconceptswherethediodelasercanbeintegratedwithplanargratingsandasemiconductormatrixelementhavetobestudied.Severaloptionsfortherealisationofthesemiconductormatrixmodulatorsaretobeexplored.Inprinciple,highspeedmodulatorscanbeinsertedintheexternalcavityconfiguration.Themodulators289canbebasedonelectro-opticaleffectsoropto-opticaleffects.Aninterestingoptionforimplementationintheopticalnetworkistheheteron-i-p-istructurewithopto-opticalmodulationbecauseofthepossibilitytooperatetheconfigurationfullyintheopticaldomain.ThesemiconductormodulatorscanbecombinedwithaphasedarraystructureandthelaserdiodeitselftoformamonolithicallyintegratedversionoftheLNN.Sinceatwo-dimensionalexternalcavityconfigurationandatwodimensionalmatrixareneeded,novelconceptsintheintegrationmethodhavetobefound.AsecondissueistheexplorationofconceptsofLNNbasedtelecommunicationnodes.Opticalpayload(data)toberoutedorswitchedcanbeprovidedwithanopticalheader.AnopticalheaderprecedingthepayloadcanbeusedtoinputthemodulatorsintheLNN.Theserialinformationintheheaderneedstobetransformedintoaparallelpattern,whichcanbeusedtoinfluencethedegreeofreflectionimposedonthelongitudinalmodes.Oneoptionistouseanopticalgatethatcanselectandroutetheheadertoanopticalseries-to-parallelconverterthatmayconsistoffibredelaylines.Theoutputoftheconvertercanbeusedtosetthefirstdimensionofamodulatormatrix,whichoperates,intheopto-opticalmode.Alternativemethodsneed

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论