基于多数据融合传感器的分布式温度控制系统(中英文对照论文).doc_第1页
基于多数据融合传感器的分布式温度控制系统(中英文对照论文).doc_第2页
基于多数据融合传感器的分布式温度控制系统(中英文对照论文).doc_第3页
基于多数据融合传感器的分布式温度控制系统(中英文对照论文).doc_第4页
基于多数据融合传感器的分布式温度控制系统(中英文对照论文).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DISTRIBUTEDTEMPERATURECONTROLSYSTEMBASEDONMULTI-SENSORDATAFUSIONAbstract:Temperaturecontrolsystemhasbeenwidelyusedoverthepastdecades.Inthispaper,ageneralarchitectureofdistributedtemperaturecontrolsystemisputforwardbasedonmulti-sensordatafusionandCANbus.Anewmethodofmulti-sensordatafusionbasedonparameterestimationisproposedforthedistributedtemperaturecontrolsystem.Themajorfeatureofthesystemisitsgenerality,whichissuitableformanyfieldsoflargescaletemperaturecontrol.Experimentshowsthatthissystempossesseshigheraccuracy,reliability,goodrealtimecharacteristicandwideapplicationprospectKeywords:Distributedcontrolsystem;CANbus;intelligentCANnode;multi-sensordatafusion.1.IntroductionDistributedtemperaturecontrolsystemhasbeenwidelyusedinourdailylifeandproduction,includingintelligentbuilding,greenhouse,constanttemperatureworkshop,largeandmediumgranary,depot,andsoon1.Thiskindofsystemshouldensurethattheenvironmenttemperaturecanbekeptbetweentwopredefinedlimits.IntheconventionaltemperaturemeasurementsystemswebuildanetworkthroughRS-485Bususingasingle-chipmeteringsystembasedontemperaturesensors.Withtheaidofthenetwork,wecancarryoutcentralizedmonitoringandcontrolling.However,whenthemonitoringareaismuchmorewidespreadandtransmissiondistancebecomesfarther,thedisadvantagesofRS-485Busbecomemoreobvious.Inthissituation,thetransmissionandresponsespeedbecomeslower,theanti-interferenceabilitybecomesworse.Therefore,weshouldseekoutanewcommunicationmethodtosolvetheproblemsproducedbyRS-485Bus.Duringallthecommunicationmanners,theindustrialcontrol-orientedfieldbustechnologycanensurethatwecanbreakthroughthelimitationoftraditionalpointtopointcommunicationmodeandbuilduparealdistributedcontrolandcentralizedmanagementsystem.Asaserialcommunicationprotocolsupportingdistributedreal-timecontrol,CANbushasmuchmoremeritsthanRS-485Bus,suchasbettererrorcorrectionability,betterreal-timeability,lowercostandsoon.Presently,ithasbeenextensivelyusedintheimplementationofdistributedmeasurementandcontroldomains.Withthedevelopmentofsensorytechnology,moreandmoresystemsbegintoadoptmulti-sensordatafusiontechnologytoimprovetheirperformances.Multi-sensordatafusionisakindofparadigmforintegratingthedatafrommultiplesourcestosynthesizethenewinformationsothatthewholeisgreaterthanthesumofitsparts345.Anditisacriticaltaskbothinthecontemporaryandfuturesystemswhichhavedistributednetworksoflow-cost,resource-constrainedsensors2.DistributedarchitectureofthetemperaturecontrolsystemThedistributedarchitectureofthetemperaturecontrolsystemisdepictedintheFigure1.Ascanbeseen,thesystemconsistsoftwomodulesseveralintelligentCANnodesandamaincontroller.TheyareinterconnectedwitheachotherthroughCANbus.Eachmoduleperformsitspartintothedistributedarchitecture.Thefollowingisabriefdescriptionofeachmoduleinthearchitecture.31maincontrollerAsthesystemsmaincontroller,thehostPCcancommunicatewiththeintelligentCANnodes.Itisdevotedtosuperviseandcontrolthewholesystem,suchassystemconfiguration,displayingrunningcondition,parameterinitializationandharmonizingtherelationshipsbetweeneachpart.Whatsmore,wecanprintorstorethesystemshistorytemperaturedata,whichisveryusefulfortheanalysisofthesystemperformance3.2.IntelligentCANnodeEachintelligentCANnodeofthetemperaturecontrolsystemincludesfiveunits:MCUasinglechip,A/Dconversionunit,temperaturemonitoringunitsensorgroup,digitaldisplayunitandactuatorsacoolingunitandaheatingunit.TheoperatingprincipleoftheintelligentCANnodeisdescribedasfollows.Inthepracticalapplication,wedividetheregionofthecontrolobjectiveintomanycells,andlaytheintelligentCANnodesinsomeofthetypicalcells.Ineachnode,MCUcollectstemperaturedatafromthetemperaturemeasurementsensorgroupswiththeaidoftheA/Dconversionunit.Simultaneously,itperformsbasicdatafusionalgorithmstoobtainafusionvaluewhichismoreclosetotherealone.Andthedigitaldisplayunitdisplaysthefusingresultofthenodetimely,sowecanunderstandtheenvironmenttemperatureineverycontrolcellseparately.Bycomparingthefusionvaluewiththesetonebythemaincontroller,theintelligentCANnodecanimplementthedegenerativefeedbackcontrolofeachcellthroughenablingthecorrespondingheatingorcoolingdevices.IfthefusionresultisbiggerthanthesetvalueinthespecialintelligentCANnode,thecoolingunitwillbegintowork.Onthecontrary,ifthefusionresultislessthanthesetvalueinthenodetheheatingunitwillbegintowork.Bythismeanswecannotonlymonitortheenvironmenttemperature,butalsocanmakethecorrespondingactuatorworksoastoregulatethetemperatureautomatically.AtthesametimeeveryCANnodeisabletosenddataframetotheCANbuswhichwillnotifythemaincontrollerthetemperaturevalueinthecellsothatcontrollercanconvenientlymakedecisionstomodifytheparameterornot.SincetheCANnodescanregulatethetemperatureofthecellwheretheyare,thetemperatureinthewholeroomwillbekepthomogeneous.Whatsmore,wecanalsocontroltheintelligentnodebymodifyingthetemperaturessettingvalueonthehostPC.Generally,theprocessorsonthespotarenotgoodatcomplexdataprocessinganddatafusing,soitbecomesverycriticalhowtochooseasuitabledatafusionalgorithmforthesystem.Intheposteriorsection,wewillintroduceadatafusionmethodwhichissuitablefortheintelligentCANnodes。4.Multi-sensordatafusionTheaimtousedatafusioninthedistributedtemperaturecontrolsystemistoeliminatetheuncertainty,gainamorepreciseandreliablevaluethanthearithmeticalmeanofthemeasureddatafromfinitesensors.Furthermore,whensomeofthesensorsbecomeinvalidinthetemperaturesensorgroups,theintelligentCANnodecanstillobtaintheaccuratetemperaturevaluebyfusingtheinformationfromtheothervalidsensors.4.1.ConsistencyverificationofthemeasureddataDuringtheprocessoftemperaturemeasurementinourdesigneddistributedtemperaturecontrolsystem,measurementerrorcomesintobeinginevitablybecauseoftheinfluenceoftheparoxysmaldisturbortheequipmentfault.Soweshouldeliminatethecarelessmistakebeforedatafusion.Wecaneliminatethemeasurementerrorsbyusingscatterdiagrammethodinthesystemequippedwithlittleamountofsensors.ParameterstorepresentthedatadistributionstructureincludemedianTM,upperquartilenumberFv,lowerquartilenumberFLandquartiledispersiondF.Itissupposedthateachsensorinthetemperaturecontrolsystemproceedstemperaturemeasurementindependently.Inthesystem,thereareeightsensorsineachtemperaturesensorgroupoftheintelligentCANnode.SowecanobtaineighttemperaturevaluesineachCANnodeatthesametime.Wearrangethecollectedtemperaturedatainasequencefromsmalltolarge:T1,T2,T8Inthesequence,T1isthelimitinferiorandT8isthelimitsuperior.WedefinethemedianTMas:(1)TheupperquartileFvisthemedianoftheintervalTM,T8.ThelowerquartilenumberFListhemedianoftheintervalT1,TM.Thedispersionofthequartileis:(2)WesupposethatthedataisanaberrationoneifthedistancefromthemedianisgreaterthanadF,thatis,theestimationintervalofinvaliddatais:(3)Intheformula,aisaconstant,whichisdependentonthesystemmeasurementerror,commonlyitsvalueistobe0.5,1.0,2.0andsoon.Therestvaluesinthemeasurementcolumnareconsideredastobethevalidoneswithconsistency.AndtheSingle-ChipintheintelligentCANnodewillfusetheconsistentmeasurementvaluetoobtainafusionresult5.TemperaturemeasurementdatafusionexperimentByapplyingthedistributedtemperaturecontrolsystemtoagreenhouse,weobtainanarrayofeighttemperaturevaluesfromeightsensorsasfollowsThemeanvalueoftheeightmeasurementtemperatureresultisComparingthemeanvalue(8)Twiththetruetemperaturevalueinthecellofthegreenhouse,wecanknowthatthemeasurementerroris+0.5.Afterweeliminatethecarelesserrorfromthefifthsensorusingthemethodintroducedbefore,wecanobtainthemeanvalueoftherestsevendata(7)T=29.6,themeasurementerroris-0.4.ThesevenrestconsistentsensorcanbedividedintotwogroupswithsensorS1,S3,S7inthefirstgroupandsensorS2,S4,S6,S8inthesecondone.Thearithmeticalmeanofthetwogroupsofmeasureddataandthestandarddeviationareasfollowsrespectively:Accordingtoformula(13),wecaneducethetemperaturefusionvaluewiththesevenmeasuredtemperaturevalue.Theerrorofthefusiontemperatureresultis-0.3.Itisobviousthatthemeasurementresultfromdatafusionismoreclosetothetruevaluethanthatfromarithmeticalmean.Inthepracticalapplication,themeasuredtemperaturevaluemaybeverydispersiveasthemonitoringareabecomesbigger,datafusionwillimprovethemeasuringprecisionmuchmoreobviously.6.ConclusionsThedistributedtemperaturecontrolsystembasedonmulti-sensordatafusionisconstructedthroughCANbus.Ittakesfulladvantageofthecharacteristicsoffieldbuscontrolsystem-FDCS.Dataacquisition,datafusionandsystemcontrollingiscarriedoutintheintelligentCANnode,andsystemmanagementisimplementedinthemaincontroller(hostPC).ByusingCANbusanddatafusiontechnologythereliabilityandreal-timeabilityofthesystemisgreatlyimproved.Wearesurethatitwillbewidelyusedinthefuture.References1WaltzE.LiinasJ,Multi-sensorDataFusion,ArtechHouse,NewYork,1990.2PhilipsSemiconductors,(1995b).“P82C150:CANseriallinkedI/Odevice(SLIO)withdigitalandanalogportfunctions”,preliminaryDataSheet,October1995.3Aslam,J.,Li,Q.,Rus,D.,Threepower-awareroutingalgorithmsforsensornetworks,WirelessCommunicationsandMobileComputing,pp.187208,2003.4R.C.Luo,M.G.Kay,MultisensorIntegrationandFusioninIntelligentSystems,IEEETrans.onSystems,Man,andCybernetics,Vol.19,No.5,pp.901-931September/October,1989.5PauLF,Sensorsdatafusion,JournalofIntelligentandRoboticSystem,pp.103-106,1998.6ThomopoulosSC.,Sensorintegrationanddatafusion,JournalofRoboticSystems,pp.337-372,1990.7RaoBSY,Durrant-WhyteHF,SheenJA,Afullydecentralizedmulti-sensorsystemfortrackingandsurveillance,TheInternationalJournalofRoboticsResearch,MassachusettsInstituteofTechnology,Vol12,No.1,pp.20-44,Feb1993.8TenneyRR,JrsandellNR,Detectionwithdistributedsensors,AES,Vol17,pp.501-510,1981基于多数据融合传感器的分布式温度控制系统摘要:在过去的几十年,温度控制系统已经被广泛的应用。对于温度控制提出了一种基于多传感器数据融合和CAN总线控制的一般结构。一种新方法是基于多传感器数据融合估计算法参数分布式温控系统。该系统的重要特点是其共性,其适用于很多具体领域的大型的温度控制。实验结果表明该系统具有较高的准确性、可靠性,良好的实时性和广泛的应用前景。关键词:分布式控制系统;CAN总线控制;智能CAN节点;多数据融合传感器。1介绍分布式温度控制系统已经被广泛的应用在我们日常生活和生产,包括智能建筑、温室、恒温车间、大中型粮仓、仓库等。这种控制保证环境温度能被保持在两个预先设定的温度间。在传统的温度测量系统中,我们用一个基于温度传感器的单片机系统建立一个RS-485局域网控制器网络。借助网络,我们能实行集中监控和控制.然而,当监测区域分布更广泛和传输距离更远,RS-485总线控制系统的劣势更加突出。在这种情况下,传输和响应速度变得更低,抗干扰能力更差。因此,我们应当寻找新的通信的方法来解决用RS-485总线控制系统而产生的问题。在所有的通讯方式中,适用于工业控制系统的总线控制技术,我们可以突破传统点对点通信方式的限制、建立一个真正的分布式控制与集中管理系统,CAN总线控制比RS-485总线控制系统更有优势。比如更好的纠错能力、改善实时的能力,低成本等。目前,它正被广泛的应用于实现分布式测量和范围控制。随着传感器技术的发展,越来越多的系统开始采用多传感器数据融合技术来提高他们的实现效果。多传感器数据融合是一种范式对多种来源整合数据,以综合成新的信息,比其他部分的总和更加强大。无论在当代和未来,系统的低成本,节省资源都是传感器中的一项重要指标。2分布式架构的温度控制系统分布式架构温度控制系统如图中所示的图1。可以看出,这系统由两个模块两个智能CAN节点和一个主要的控制器组成。每个模块部分执行进入分布式架构。下面的是简短的描述下各模块。3.1主要控制器作为系统的主要控制器,这主pc能和智能CAN节点通信。它致力于监督和控制整个系统,系统配置、显示运行状况、参数初始化和协调各部分间的关系。更重要的是,我们能打印或储存系统的历史温度的数据,这对分析系统性能是非常有用的。3.2智能CAN节点每一个温度控制系统的智能CAN节点有五个部分:MCU一个单片机,A/D转换单元,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论