SMT知识介绍和常见问题分析.docx_第1页
SMT知识介绍和常见问题分析.docx_第2页
SMT知识介绍和常见问题分析.docx_第3页
SMT知识介绍和常见问题分析.docx_第4页
SMT知识介绍和常见问题分析.docx_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SMT焊锡膏知识介绍之二:锡膏的分类方式及选择标准锡膏的分类方式及选择标准一般情况下,首先选择焊锡膏大类,再根据合金组成、颗粒度、粘度等指标来选择。(一)、分类方式:A、普通松香清洗型分RA(ROSIN ACTIVATED )及RMA(ROSIN MILDLY ACTIVATED):此种类型锡膏在焊接过程中表现出较好“上锡速度”并能保证良好的“焊接效果”;在焊接工作完成后,PCB表面松香残留相对较多,可用适当清洗剂清洗,清洗后板面光洁无残留,保证了清洗后的板面具有良好的绝缘阻抗,并能通过各种电气性能的技术检测;B、免清洗型焊锡膏NC(NO CLEAN):此种锡膏焊接完成后,PCB板面较为光洁、残留少,可通过各种电气性能技术检测,不需要再次清洗,在保证焊接品质的同时缩短了生产流程,加快了生产进度;C、水溶性锡膏WMA(WATER SOLUBLE PASTES):早期生产的锡膏因技术上的原因,PCB板面残留普遍过多,电气性能不够理想,严重影响了产品品质;当时多用CFC清洗剂来清洗,因CFC对环保不利,许多国家已禁用;为了适应市场的需求,应运产生了水溶性焊锡膏,此种锡膏焊接工作完成后它的残留物可用水清洗干净,既降低了客户的生产成本,又符合环保的要求。(二)、选择标准:1、合金组份:一般情况下,选择Sn63/Pb37焊料合金组份即可满足焊接要求;对于有银(Ag)或钯(Pd)镀层器件的焊接,一般选择合金组份为Sn62/Pb36/Ag2的焊锡膏;对于有不耐热冲击器件的pcb焊接选择含Bi的焊粉。2、锡膏的粘度(VISCOSITY):在SMT的工作流程中,因为从印刷(或点注)完锡膏并贴上元件,到送入回流焊加热制程,中间有一个移动、放置或搬运PCB的过程;在这个过程中为了保证已印刷好(或点好)的焊膏不变形、已贴在PCB焊膏上的元件不移位,所以要求锡膏在PCB进入回流焊加热之前,应有良好的粘性及保持时间。A、对于锡膏的粘性程度指标(即粘度)常用“PaS”为单位来表示;其中200-600PaS的锡膏比较适合用于针式点注制式或自动化程度较高的生产工艺设备;印刷工艺要求锡膏的粘度相对较高,所以用于印刷工艺的锡膏其粘度一般在600-1200 PaS左右,适用于手工或机械印刷;B、高粘度的锡膏具有焊点成桩型效果好等特点,较适于细间距印刷;而低粘度的锡膏在印刷时具有较快下落、工具免洗刷、省时等特点;C、锡膏粘度的另一特点是:其粘度会随着对锡膏的搅拌而改变,在搅拌时其粘度会有所降低;当停止搅拌时略微静置后,其粘度会回复原状;这一点对于如何选择不同粘度的锡膏有着极为重要的作用。 另外,锡膏的粘度和温度有很大的关系,在通常状况下,其粘度将会随着温度的升高而逐渐降低。3、目数(MESH):在国内焊锡膏生产厂商多用锡粉的“颗粒度”来对不同锡膏进行分类,而很多国外厂商或进口焊锡膏多用“目数(MESH)”的概念来进行不同锡膏的分类。目数(MESH)基本概念是指筛网每一平方英寸面积上的网孔数;在实际锡粉生产过程中,大多用几层不同网眼的筛网来收集锡粉,因每层筛网的网眼大小不同,所以透过每层网眼的锡粉其颗粒度也不尽相同,最后收集到的锡粉颗粒,其颗粒度也是一个区域值;A、从以上概念来看,锡膏目数指标越大,该锡膏中锡粉的颗粒直径就越小;而当目数越小时,就表示锡膏中锡粉的颗粒越大;参考下表对照:图片:目数与颗粒度对照表n.JPGB、如果锡膏的使用厂商按锡膏的目数指标选择锡膏时,应根据PCB上距离最小的焊点之间的间距来确定:如果有较大间距时,可选择目数较小的锡膏,反之即当各焊点间的间距较小时,就应当选择目数较大的锡膏;一般选择颗粒度直径约为模板开口的1/5以内。 使用锡膏应注意的问题(一)、焊锡膏的保存要求:焊膏的保存应该以密封形态存放在恒温、恒湿的冷柜内,保存温度为010,如温度过高,焊膏中的合金粉未和焊剂起化学反应后,使粘度、活性降低影响其性能;如温度过低,焊剂中的树脂会产生结晶现象,使焊膏形态变坏。在保管过程中,更重要的一点是应注意保持“恒温”这样一个问题,如果在较短的时间内,使锡膏不断地从各种环境下反复出现不同的温度变化,同样会使焊锡膏中焊剂性能产生变化,从而影响焊锡膏的焊接品质。(二)、使用前的要求:焊膏从冷柜(或冰箱)中取出时,应在其密封状态下,待其回到室温后再开封,约为2-3小时;如果刚从冷柜中取出就开封,存在的温差会使焊膏结露、凝成水份,这样会导致在回流焊时产生焊锡珠;但也不可用加热的方法使焊锡膏回到室温,急速的升温会使焊膏中焊剂的性能变坏,从而影响焊接效果。这也是锡膏使用厂商在使用过程中应该注意的一个问题。(三)、使用时的注意事项:1、刮刀压力:保证印出焊点边缘清晰、表面平整、厚度适宜;2、刮刀速度:保证焊膏相对于刮刀子为滚动而非滑动,一般情况下,10-20mm/s为宜;3、印刷方式:以接触式印刷为宜;另外,在使用时要对焊膏充分搅拌,再按印刷设定量加到印刷网板上,采用点注工艺的,还须调整好点注量。在长时间的印刷情况下,因焊膏中溶剂的挥发,会影响到印刷时锡膏的脱模性能,因此对存放焊锡膏的容器不可重复使用(只可一次性使用),印刷后网板上所剩的焊锡膏,应用其它清洁容器装存保管,下次再用时,应先检查所剩锡膏中有无结块或凝固状况,如果过分干燥,应添加供应商提供的锡膏稀释剂调稀后再用。操作人员作业时,要注意避免焊膏与皮肤直接接触。另外,印刷完成的基板,应当天完成焊接。(四)、工作环境要求:焊锡膏工作场所最佳状况为:温度2025,相对湿度5070%,洁净、无尘、防静电。大致讲来,焊锡膏的成份可分成两个大的部分,即助焊剂和焊料粉(FLUX &SOLDER POWDER)。(一)、助焊剂的主要成份及其作用:A、活化剂(ACTIVATION):该成份主要起到去除PCB铜膜焊盘表层及零件焊接部位的氧化物质的作用,同时具有降低锡、铅表面张力的功效;B、触变剂(THIXOTROPIC) :该成份主要是调节焊锡膏的粘度以及印刷性能,起到在印刷中防止出现拖尾、粘连等现象的作用;C、树脂(RESINS):该成份主要起到加大锡膏粘附性,而且有保护和防止焊后PCB再度氧化的作用;该项成分对零件固定起到很重要的作用;D、溶剂(SOLVENT):该成份是焊剂组份的溶剂,在锡膏的搅拌过程中起调节均匀的作用,对焊锡膏的寿命有一定的影响;(二)、焊料粉:焊料粉又称锡粉主要由锡铅合金组成,一般比例为63/37;另有特殊要求时,也有在锡铅合金中添加一定量的银、铋等金属的锡粉。概括来讲锡粉的相关特性及其品质要求有如下几点:A、锡粉的颗粒形态对锡膏的工作性能有很大的影响:A-1、重要的一点是要求锡粉颗粒大小分布均匀,这里要谈到锡粉颗粒度分布比例的问题;在国内的焊料粉或焊锡膏生产厂商,大家经常用分布比例来衡量锡粉的均匀度:以2545m的锡粉为例,通常要求35m左右的颗粒分度比例为60%左右,35m 以下及以上部份各占20%左右; A-2、另外也要求锡粉颗粒形状较为规则;根据“中华人民共和国电子行业标准锡铅膏状焊料通用规范(SJ/T 11186-1998)”中相关规定如下:“合金粉末形状应是球形的,但允许长轴与短轴的最大比为1.5的近球形状粉末。如用户与制造厂达成协议,也可为其他形状的合金粉末。”在实际的工作中,通常要求为锡粉颗粒长、短轴的比例一般在1.2以下。A-3、如果以上A-1及A-2的要求项不能达到上述基本的要求,在焊锡膏的使用过程中,将很有可能会影响锡膏印刷、点注以及焊接的效果。B、各种锡膏中锡粉与助焊剂的比例也不尽相同,选择锡膏时,应根据所生产产品、生产工艺、焊接元器件的精密程度以及对焊接效果的要求等方面,去选择不同的锡膏;B-1、根据“中华人民共和国电子行业标准锡铅膏状焊料通用规范(SJ/T 11186-1998)”中相关规定,“焊膏中合金粉末百分(质量)含量应为65%-96%,合金粉末百分(质量)含量的实测值与订货单预定值偏差不大于1%”;通常在实际的使用中,所选用锡膏其锡粉含量大约在90%左右,即锡粉与助焊剂的比例大致为90:10; B-2、普通的印刷制式工艺多选用锡粉含量在89-91.5%的锡膏;B-3、当使用针头点注式工艺时,多选用锡粉含量在84-87%的锡膏;B-4、回流焊要求器件管脚焊接牢固、焊点饱满、光滑并在器件(阻容器件)端头高度方向上有1/3至2/3高度焊料爬升,而焊锡膏中金属合金的含量,对回流焊焊后焊料厚度(即焊点的饱满程度)有一定的影响;为了证实这种问题的存在,有关专家曾做过相关的实验,现摘抄其最终实验结果如下表供参考: 图片:锡膏金属量与焊点厚度的关系n.JPG 从上表看出,随着金属含量减少,回流焊后焊料的厚度减少,为了满足对焊点的焊锡量的要求,通常选用85%92%含量的焊膏。C、锡粉的“低氧化度”也是非常重要的一个品质要求,这也是锡粉在生产或保管过程中应该注意的一个问题;如果不注意这个问题,用氧化度较高的锡粉做出的焊锡膏,将在焊接过程中严重影响焊接的品质。无铅焊锡膏印刷工艺中常见的问题1,堵孔.印刷时堵孔现象主要发生在0201元件模版的印刷中,用于0201元件的模版窗口只有0.3mmx0.15mm(12milx6mil)大小.模版厚度通常是0.125mm(5mil).在焊锡膏印刷过程中这类孔很容易堵塞.高黏性的焊锡膏容易年在小孔壁上,印刷后不容易通过小孔而完整地落在电路板上.这是因为Sn-Ag-Cu焊锡膏的密度(7.49g/cm3)比Sn-Pb焊锡膏(8.4g/cm3)小,也就是说无铅焊锡膏要轻些.所以无铅焊锡膏不容易从小孔中脱落出来,容易造成堵孔,因0201模版开孔大小和焊锡膏密度几乎无法调整,所以选择一个适当的黏度的焊锡膏就显得比较重要.2,桥连.桥连就是印刷电路板上的相邻焊锡连在一起.调整印刷机参数能解决这个问题.增加模版擦洗频率,适当提高印刷速度以及降低刮刀的压力可以帮助改善桥连.但对于细间距的器件焊盘,通常元件之间的间距仅仅在0.1mm左右;尽管做了上述的调整,印刷时还是会有桥连发生,为了避免发生焊锡膏印刷时桥连现象,选择低塌落系数的焊锡膏是一种比较好的办法.由于有的焊锡膏随着时间的延长,塌落系数会变大,这样焊锡膏在印刷一段时间后就可能发生桥连,因此在印刷过程中还应定时的补充新焊锡膏以保证焊锡膏工艺性能的稳定性.3,焊锡膏容易黏刮刀.焊锡膏黏刮刀也是无铅焊锡膏在印刷工艺中常见的缺陷,造成焊锡膏黏刮刀的主要原因是焊锡膏年度太.引起焊锡膏黏增高的原因有很多,除了无铅焊锡膏密度轻之外,还有一个重要原因是从化学的角度讲,焊锡膏是一种化学物质,它包括Sn合金粉和焊剂两部分,Sn合金粉又是以超细微粒分散在焊剂中,因此Sn合金粉会和焊剂密切结合而发生缓慢反应,使其性能变坏,通常建议焊锡膏要放在低温(0-10度)以下存放,使用时不要超过保存期限.有时,刚开瓶使用的新鲜焊锡膏起初时也会出现黏度稍高现象,以致发生黏刮刀现象,通常只要多反复印刷几次,黏度就会降下来,不会再黏刮刀了.各位同僚你们用的无铅焊锡膏都是什么合金呀 Sn96.5Ag3Cu0.5(日本,JEITA推荐);主流推荐Sn95.5Ag3.8 Cu0.7(欧盟,IDEALS推荐);Sn95.5Ag3.9 Cu0.6 (Sn95.5Ag4.0Cu0.5 ,美国,NEMI推荐)。 全球资源溃乏,应当提倡节能,锡膏印刷用节能型刮刀产品名称:九方节能型刮刀 (TSP-500) 九方节能型号刮刀TSP-500 TSP-500印刷机刮刀产品分类:SMT刮刀及刮刀片-九方节能型刮刀九方节能型刮刀 350mm(适用于TSP-500)九方节能型刮刀特点:白色挡锡块可以任意调节印刷宽度,因此可以减少一台机器配置多套不同尺寸的刮刀现状。两端白色挡锡块可以根据PCB的长度调整至合理的印刷宽度,锡膏可以根据PCB宽度来决定锡膏的投放,大大减少锡膏作无效滚动。挡锡块的底部与钢网紧密贴合,使锡膏不易从挡锡块两边溢出,这样可以保证锡膏在有效的丝印区域滚动使用,减少由于助焊剂挥发,锡粉氧化,锡膏粘度变小等引起的印刷品质不良/read-htm-tid-3958.html百科名片 SMT机器SMT是表面组装技术(表面贴装技术)(Surface Mounted Technology的缩写),是目前电子组装行业里最流行的一种技术和工艺。目录SMT有何特点 为什么要用SMT SMT 基本工艺构成要素 锡膏印刷 零件贴装 回流焊接 AOI光学检测 维修 分板SMT回流焊技术 回流焊概述 红外再流焊 回流焊工艺流程 无铅锡膏回流焊的注意事项 汽相再流焊 激光再流焊SMT常用知识简介 SMT 之IMC 简介 定义 一般性质 焊锡性与表面能 锡铜介面合金共化物的生成与老化 两种锡铜合金IMC的比较 锡铜IMC的老化 锡金IMC 锡银IMC 锡镍IMC 结论SMT贴片红胶基本知识及应用指南 SMT贴片红胶基本知识及应用指南 SMT贴片红胶的性质 SMT贴片红胶的应用 SMT贴片红胶的工艺方式 SMT贴片红胶的管理SMT组装工艺 1 焊料 2 波峰 3 波峰焊接后的冷却在IT行业的解释SMT有何特点为什么要用SMTSMT 基本工艺构成要素 锡膏印刷 零件贴装 回流焊接 AOI光学检测 维修 分板SMT回流焊技术 回流焊概述 红外再流焊 回流焊工艺流程 无铅锡膏回流焊的注意事项 汽相再流焊 激光再流焊SMT常用知识简介SMT 之IMC 简介 定义 一般性质 焊锡性与表面能 锡铜介面合金共化物的生成与老化 两种锡铜合金IMC的比较 锡铜IMC的老化 锡金IMC 锡银IMC 锡镍IMC 结论SMT贴片红胶基本知识及应用指南 SMT贴片红胶基本知识及应用指南 SMT贴片红胶的性质 SMT贴片红胶的应用 SMT贴片红胶的工艺方式 SMT贴片红胶的管理SMT组装工艺 1 焊料 2 波峰 3 波峰焊接后的冷却在IT行业的解释展开编辑本段SMT有何特点电子电路表面组装技术(Surface Mount Technology,SMT),称为表面贴装或表面安装技术。它是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通过回流焊或浸焊等方法加以焊接组装的电路装连技术。 组装密度高、电子产品体积小、重量轻,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用SMT之后,电子产品体积缩小40%60%,重量减轻60%80%。 SMT可靠性高、抗震能力强。焊点缺陷率低。 高频特性好。减少了电磁和射频干扰。 易于实现自动化,提高生产效率。降低成本达30%50%。节省材料、能源、设备、人力、时间等。 编辑本段为什么要用SMT电子产品追求小型化,以前使用的穿孔插件元件已无法缩小。 电子产品功能更完整,所采用的集成电路(IC)已无穿孔元件,特别是大规模、高集成IC,不得不采用表面贴片元件。 产品批量化,生产自动化,厂方要以低成本高产量,出产优质产品以迎合顾客需求及加强市场竞争力 电子元件的发展,集成电路(IC)的开发,半导体材料的多元应用。 电子科技革命势在必行,追逐国际潮流。 SMT加工编辑本段SMT 基本工艺构成要素印刷(红胶/锡膏)- 检测(可选AOI全自动或者目视检测)-贴装(先贴小器件后贴大器件:分高速贴片及集成电路贴装)-检测(可选AOI 光学/目视检测)- 焊接(采用热风回流焊进行焊接)- 检测(可分AOI 光学检测外观及功能性测试检测)- 维修(使用工具:焊台及热风拆焊台等)- 分板(手工或者分板机进行切板) 工艺流程简化为:印刷-贴片-焊接-检修(每道工艺中均可加入检测环节以控制质量) 锡膏印刷其作用是将锡膏呈45度角用刮刀漏印到PCB的焊盘上,为元器件的焊接做准备。所用设备为印刷机 SMT加工车间(锡膏印刷机),位于SMT生产线的最前端。 零件贴装其作用是将表面组装元器件准确安装到PCB的固定位置上。所用设备为贴片机,位于SMT生产线中印刷机的后面,一般为高速机和泛用机按照生产需求搭配使用。 回流焊接其作用是将焊膏融化,使表面组装元器件与PCB板牢固焊接在一起。所用设备为回流焊炉,位于SMT生产线中贴片机的后面,对于温度要求相当严格,需要实时进行温度量测,所量测的温度以profile的形式体现。 AOI光学检测其作用是对焊接好的PCB板进行焊接质量的检测。所使用到的设备为自动光学检测机(AOI),位置根据检测的需要,可以配置在生产线合适的地方。有些在回流焊接前,有的在回流焊接后 维修其作用是对检测出现故障的PCB板进行返修。所用工具为烙铁、返修工作站等。配置在AOI光学检测后 分板其作用对多连板PCBA进行切分,使之分开成单独个体,一般采用V-cut与 机器切割方式 SMT工厂编辑本段SMT回流焊技术回流焊概述回流焊又称“再流焊”或“再流焊机”或“回流炉”(Reflow Oven),它是通过提供一种加热环境,使焊锡膏受热融化从而让表面贴装元器件和PCB焊盘通过焊锡膏合金可靠地结合在一起的设备。根据技术的发展分为:气相回流焊、红外回流焊、远红外回流焊、红外加热风回流焊和全热风回流焊。另外根据焊接特殊的需要,含有充氮的回流焊炉。目前比较流行和实用的大多是远红外回流焊、红外加热风回流焊和全热风回流焊。 红外再流焊(1)第一代-热板式再流焊炉 (2)第二代-红外再流焊炉 热能中有 80%的能量是以电磁波的形式红外线向外发射的。其波长在可见光之上限0.70.8um 到1mm 之间,0.721.5um 为近红外;1.55.6um 为中红外;5.61000um 为远红外,微波则在远红外之上. 升温的机理:当红外波长的振动频率与被辐射物体分子间的振动频率一致时,就会产生共振,分子的激烈振动意味着物体的升温。波长为18um 第四区温度设置最高,它可以导致焊区温度快速上升,提高泣湿力。优点:使助焊剂以及有机酸和卤化物迅速水利化从而提高润湿能力;红外加热的辐射波长与吸收波长相近似,因此基板升温快、温差小;温度曲线控制方便,弹性好;红外加热器效率高,成本低。 缺点:穿透性差,有阴影效应热不均匀。 对策:在再流焊中增加了热风循环。 (3)第三代-红外热风式再流焊。 对流传热的快慢取决于风速,但过大的风速会造成元件移位并助长焊点的氧化,风速控制在1.01.8m/s。热风的产生有两种形式:轴向风扇产生(易形成层流,其运动造成各温区分界不清)和切向风扇(风扇安装在加热器外侧,产生面板涡流而使得各温区可精确控制)。 基本结构与温度曲线的调整: 1. 加热器:管式加热器、板式加热器铝板或不锈钢板 2. 传送系统:耐热四氟乙烯玻璃纤维布, 3. 运行平稳、导热性好,但不能连线,7. 适用于小型热板型不锈钢网,适用于双面PCB,也不能连线;链条导轨,可实现连线生产 4. 强制对流系统:温控系统: 回流焊工艺流程1. 单面板: (1) 在贴装与插件焊盘同时印锡膏; (2) 贴放 SMC/SMD; (3) 插装 TMC/TMD; (4) 再流焊 2. 双面板 (1) 锡膏-再流焊工艺,完成双面片式元件的焊接; (2) 然后在 B 面的通孔元件焊盘上涂覆锡膏; (3) 反转 PCB 并插入通孔元件; (4) 第三次再流焊。 无铅锡膏回流焊的注意事项1. 与SMB 的相容性,包括焊盘的润湿性和SMB 的耐热性; 2. 焊点的质量和焊点的抗张强度; 3. 焊接工作曲线: 预热区:升温率为1.31.5 度/s,温度在90100s 内升至150 度 保温区:温度为 150180 度,时间4060s 再流区:从180到最高温度250 度需要1015s,回到保温区约30s快速冷却 无铅焊接温度(锡银铜)217度 4、 Flip Chip 再流焊技术F.C 汽相再流焊又称汽相焊(Vapor Phase Soldering,VPS),美国最初用于厚膜集成电路的焊接,具有升温速度快和温度均匀恒定的优点,但传热介质FC-70 价格昂贵,且需FC-113,又是臭氧层损耗物质优点: 1. 汽相潜热释放对SMA 的物理结构和几何形状不敏感,使组件均匀加热到焊接温度 2. 焊接温度保持一定,无需采用温控手段,满足不同温度焊接的需要 3. VPS 的汽相场中是饱和蒸气,含氧量低 4. 热转化率高。 激光再流焊1. 原理和特点:利用激光束直接照射焊接部位, 3. 焊点吸收光能转变成热能,加热焊接部位,使焊料熔化。 5. 种类:固体YAG(乙铝石榴石)激光器。 编辑本段SMT常用知识简介1.一般来说,SMT车间规定的温度为237。 2.锡膏印刷时,所需准备的材料及工具: 锡膏、钢板、刮刀、擦拭纸、无尘纸、清洗剂、搅拌刀。 3. 一般常用的锡膏成份为Sn96.5%/Ag3%/Cu0.5%。 4. 锡膏中主要成份分为两大部分锡粉和助焊剂。 5. 助焊剂在焊接中的主要作用是去除氧化物、破坏融锡表面张力、防止再度氧化。 6. 锡膏中锡粉颗粒与Flux(助焊剂)的体积之比约为1:1,重量之比约为9:1。 7. 锡膏的取用原则是先进先出。 8. 锡膏在开封使用时,须经过两个重要的过程回温、搅拌。 9. 钢板常见的制作方法为:蚀刻、激光、电铸。 10. SMT的全称是Surface mount(或mounting)technology,中文意思为表面粘着(或贴装)技术。 11. ESD的全称是Electro-static discharge,中文意思为静电放电。 12. 制作SMT设备程序时,程序中包括五大部分,此五部分为PCB data; Mark data;Feeder data; Nozzle data; Part data。 13. 无铅焊锡Sn/Ag/Cu 96.5/3.0/0.5的熔点为217C。 14. 零件干燥箱的管制相对温湿度为90度时表示锡膏与波焊体无附着性; 51. IC拆包后湿度显示卡上湿度在大于30%的情况下表示IC受潮且吸湿; 52. 锡膏成份中锡粉与助焊剂的重量比和体积比正确的是90%:10%,50%:50%; 53. 早期之表面粘装技术源自于20世纪60年代中期之军用及航空电子领域; 54. 目前SMT最常使用的焊锡膏Sn和Pb的含量各为:63Sn 37Pb;共晶点为183 55. 常见的带宽为8mm的纸带料盘送料间距为4mm; 56. 在20世纪70年代早期,业界中新出现一种SMD,为“密封式无脚芯片载体”,常以LCC简代之; 57. 符号为272之组件的阻值应为2.7K欧姆; 58. 100NF组件的容值与0.10uf相同; 60. SMT使用量最大的电子零件材质是陶瓷; 61. 回焊炉温度曲线其曲线最高温度215C最适宜; 62. 锡炉检验时,锡炉的温度245较合适; 63. 钢板的开孔型式方形、三角形、圆形,星形,本磊形; 64. SMT段排阻有无方向性无; 65. 目前市面上售之锡膏,实际只有4小时的粘性时间; 66. SMT设备一般使用之额定气压为5KG/cm2; 67. SMT零件维修的工具有:烙铁、热风拔取器、吸锡枪、镊子; 68. QC分为:IQC、IPQC、。FQC、OQC; 69. 高速贴片机可贴装电阻、电容、IC、晶体管; 70. 静电的特点:小电流、受湿度影响较大; 71. 正面PTH,反面SMT过锡炉时使用何种焊接方式扰流双波焊; 72. SMT常见之检验方法: 目视检验、X光检验、机器视觉检验 73. 铬铁修理零件热传导方式为传导对流; 74. 目前BGA材料其锡球的主要成份Sn90 Pb10,SAC305,SAC405; 75. 钢板的制作方法雷射切割、电铸法、化学蚀刻; 76. 迥焊炉的温度按:利用测温器量出适用之温度; 77. 迥焊炉之SMT半成品于出口时其焊接状况是零件固定于PCB上; 78. 现代质量管理发展的历程TQC-TQA-TQM; 79. ICT测试是针床测试; 80. ICT之测试能测电子零件采用静态测试; 81. 焊锡特性是融点比其它金属低、物理性能满足焊接条件、低温时流动性比其它金属好; 82. 迥焊炉零件更换制程条件变更要重新测量测度曲线; 83. 西门子80F/S属于较电子式控制传动; 84. 锡膏测厚仪是利用Laser光测: 锡膏度、锡膏厚度、锡膏印出之宽度; 85. SMT零件供料方式有振动式供料器、盘状供料器、卷带式供料器; 86. SMT设备运用哪些机构:凸轮机构、边杆机构、螺杆机构、滑动机构; 87. 目检段若无法确认则需依照何项作业BOM、厂商确认、样品板; 88. 若零件包装方式为12w8P,则计数器Pinth尺寸须调整每次进8mm; 89. 迥焊机的种类: 热风式迥焊炉、氮气迥焊炉、laser迥焊炉、红外线迥焊炉; 90. SMT零件样品试作可采用的方法:流线式生产、手印机器贴装、手印手贴装; 91. 常用的MARK形状有:圆形,“十”字形、正方形,菱形,三角形,万字形; 92. SMT段因Reflow Profile设置不当,可能造成零件微裂的是预热区、冷却区; 93. SMT段零件两端受热不均匀易造成:空焊、偏位、墓碑; 94. 高速机与泛用机的Cycle time应尽量均衡; 95. 品质的真意就是第一次就做好; 96. 贴片机应先贴小零件,后贴大零件; 97. BIOS是一种基本输入输出系统,全英文为:Base Input/Output System; 98. SMT零件依据零件脚有无可分为LEAD与LEADLESS两种; 99. 常见的自动放置机有三种基本型态,接续式放置型,连续式放置型和大量移送式放置机; 100. SMT制程中没有LOADER也可以生产; 101. SMT流程是送板系统-锡膏印刷机-高速机-泛用机-迥流焊-收板机; 102. 温湿度敏感零件开封时,湿度卡圆圈内显示颜色为蓝色,零件方可使用; 103. 尺寸规格20mm不是料带的宽度; 104. 制程中因印刷不良造成短路的原因:a. 锡膏金属含量不够,造成塌陷b.钢板开孔过大,造成锡量过多c. 钢板品质不佳,下锡不良,换激光切割模板d.Stencil背面残有锡膏,降低刮刀压力,采用适当的VACUUM和SOLVENT 105.一般回焊炉Profile各区的主要工程目的:a.预热区;工程目的:锡膏中容剂挥发。b.均温区;工程目的:助焊剂活化,去除氧化物;蒸发多余水份。c.回焊区;工程目的:焊锡熔融。d.冷却区;工程目的:合金焊点形成,零件脚与焊盘接为一体; 106. SMT制程中,锡珠产生的主要原因:PCB PAD设计不良、钢板开孔设计不良、置件深度或置件压力过大、Profile曲线上升斜率过大,锡膏坍塌、锡膏粘度过低。 编辑本段SMT 之IMC简介IMC系Intermetallic compound 之缩写,笔者将之译为介面合金共化物。广义上说是指某些金属相互紧密接触之介面间,会产生一种原子迁移互动的行为,组成一层类似合金的化合物,并可写出分子式。在焊接领域的狭义上是指铜锡、金锡、镍锡及银锡之间的共化物。其中尤以铜锡间之良性Cu6Sn5(Eta Phase)及恶性Cu3Sn(Epsilon Phase)最为常见,对焊锡性及焊点可靠度(即焊点强度)两者影响最大,特整理多篇论文之精华以诠释之 定义能够被锡铅合金焊料(或称焊锡Solder)所焊接的金属,如铜、镍、金、银等,其焊锡与被焊盘金属之间,在高温中会快速形成一薄层类似锡合金的化合物。此物起源于锡原子及被焊金属原子之相互结合、渗入、迁移、及扩散等动作,而在冷却固化之后立即出现一层薄薄的共化物,且事后还会逐渐成长增厚。此类物质其老化程度受到锡原子与底金属原子互相渗入的多少,而又可分出好几道层次来。这种由焊锡与其被焊金属介面之间所形成的各种共合物,统称Intermetallic Compound 简称IMC,本文中仅讨论含锡的IMC,将不深入涉及其他的IMC。 一般性质由于IMC曾是一种可以写出分子式的准化合物,故其性质与原来的金属已大不相同,对整体焊点强度也有不同程度的影响,首先将其特性简述于下: IMC在PCB高温焊接或锡铅重熔(即熔锡板或喷锡)时才会发生,有一定的组成及晶体结构,且其生长速度与温度成正比,常温中较慢。一直到出现全铅的阻绝层(Barrier)才会停止(见图六)。 IMC本身具有不良的脆性,将会损及焊点之机械强度及寿命,其中尤其对抗劳强度(Fatigue Strength)危害最烈,且其熔点也较金属要高。 由于焊锡在介面附近得锡原子会逐渐移走,而与被焊金属组成IMC,使得该处的锡量减少,相对的使得铅量之比例增加,以致使焊点展性增大(Ductillity)及固着强度降低,久之甚至带来整个焊锡体的松弛。 一旦焊垫商原有的熔锡层或喷锡层,其与底铜之间已出现较厚间距过小的IMC后,对该焊垫以后再续作焊接时会有很大的妨碍;也就是在焊锡性(Solderability)或沾锡性(Wettability)上都将会出现劣化的情形。 焊点中由于锡铜结晶或锡银结晶的渗入,使得该焊锡本身的硬度也随之增加,久之会有脆化的麻烦。 IMC会随时老化而逐渐增厚,通常其已长成的厚度,与时间大约形成抛物线的关系,即: =k t, k=k exp(Q/RT) 表示t时间后IMC已成长的厚度。 K表示在某一温度下IMC 的生长常数。 T表示绝对温度。 R表示气体常数, 即8.32 J/mole。 Q表示IMC生长的活化能。 K=IMC对时间的生长常数, 以nm / 秒或m / 日( 1m / 日=3.4nm / 秒。 现将四种常见含锡的IMC在不同温度下,其生长速度比较在下表的数字中: 表1 各种IMC在不同温度中之生长速度(nm / s) 金属介面20 100135 150170 1. 锡/ 金40 2. 锡/ 银0.08 17-35 3. 锡/ 镍0.08 1 5 4. 锡/ 铜0.26 1.4 3.8 10 注 在170高温中铜面上,各种含锡合金IMC层的生长速率,也有所不同;如热浸锡铅为 5nm/s,雾状纯锡镀层为7.7(以下单位相同),锡铅比30/70的皮膜为11.2,锡铅比70/30的皮膜为12.0,光泽镀纯锡为3.7,其中以最后之光泽镀锡情况较好。 焊锡性与表面能若纯就可被焊接之金属而言,影响其焊锡性(Solderability)好坏的机理作用甚多,其中要点之一就是表面自由能(Surface Free Energy,简称时可省掉Free)的大小。也就是说可焊与否将取决于: (1) 被焊底金属表面之表面能(Surface Energy), (2) 焊锡焊料本身的表面能等二者而定。 凡底金属之表面能大于焊锡本身之表面能时,则其沾锡性会非常好,反之则沾锡性会变差。也就是说当底金属之表面能减掉焊锡表面能而得到负值时,将出现缩锡(Dewetting),负值愈大则焊锡愈差,甚至造成不沾锡(Non-Wetting)的恶劣地步。 新鲜的铜面在真空中测到的表面能约为1265达因/公分,63/37的焊锡加热到共熔点(Eutectic Point 183)并在助焊剂的协助下,其表面能只得380达因/公分,若将二者焊一起时,其沾锡性将非常良好。然而若将上述新鲜洁净的铜面刻意放在空气中经历2小时后,其表面能将会遽降到25达因/公分,与380相减不但是负值(-355),而且相去甚远,焊锡自然不会好。因此必须要靠强力的助焊剂除去铜面的氧化物,使之再活化及表面能之再次提高,并超过焊锡本身的表面能时,焊锡性才会有良好的成绩。 锡铜介面合金共化物的生成与老化当熔融态的焊锡落在洁铜面的瞬间,将会立即发生沾锡(Wetting俗称吃锡)的焊接动作。此时也立即会有锡原子扩散(Diffuse)到铜层中去,而铜原子也同时会扩散进入焊锡中,二者在交接口上形成良性且必须者Cu6Sn5的IMC,称为-phase(读做Eta相),此种新生准化合物中含锡之重量比约占60%。若以少量的铜面与多量焊锡遭遇时,只需3-5秒钟其IMC即可成长到平衡状态的原度,如240的0.5m到340的0.9m。然而在此交会互熔的同时,底铜也会有一部份熔进液锡的主体锡池中,形成负面的污染。 (a) 最初状态:当焊锡着落在清洁的铜面上将立即有-phase Cu6Sn5生成,即图中之(2)部分。 (b) 锡份渗耗期:焊锡层中的锡份会不断的流失而渗向IMC去组新的Cu6Sn5,而同时铜份也会逐渐渗向原有的-phase层次中而去组成新的Cu3Sn,即图中之(5)。此时焊锡中之锡量将减少,使得铅量在比例上有所增加,若于其外表欲再行焊接时将会发生缩锡。 (c) 多铅之阻绝层:当焊锡层中的锡份不断渗走再去组成更厚的IMC时,逐渐使得本身的含铅比例增加,最后终于在全铅层的挡路下阻绝了锡份的渗移。 (d) IMC的曝露:由于锡份的流失,造成焊锡层的松散不堪而露出IMC底层,而终致到达不沾锡的下场(Non-wetting)。 高温作业后经长时老化的过程中,在Eta-phase良性IMC与铜底材之间,又会因铜量的不断渗入Cu6Sn5中,而逐渐使其局部组成改变为Cu3Sn的恶性-phase(又读做Epsilon相)。其中铜量将由早先-phase的40%增加到-phase的66%。此种老化劣化之现象,随着时间之延长及温度之上升而加剧,且温度的影响尤其强烈。由前述表面能的观点可看出,这种含铜量甚高的恶性-phase,其表面能的数字极低,只有良性-phase的一半。因而Cu3Sn是一种对焊锡性颇有妨碍的IMC。 然而早先出现的良性-phase Cu6Sn5,却是良好焊锡性必须的条件。没有这种良性Eta相的存在,就根本不可能完成良好的沾锡,也无法正确的焊牢。换言之,必需要在铜面上首先生成Eta-phase的IMC,其焊点才有强度。否则焊锡只是在附着的状态下暂时冷却固化在铜面上而已,这种焊点就如同大树没有根一样,毫无强度可言。锡铜合金的两种IMC在物理结构上也不相同。其中恶性的-phase(Cu3Sn)常呈现柱状结晶(Columnar Structure),而良性的-phase(Cu6Sn5)却是一种球状组织(Globular)。下图8此为一铜箔上的焊锡经长时间老化后,再将其弯折磨平抛光以及微蚀后,这在SEM2500倍下所摄得的微切片实像,两IMC的组织皆清晰可见,二者之硬度皆在500微硬度单位左右。 在IMC的增厚过程中,其结晶粒子(Grains)也会随时在变化。由于粒度的变化变形,使得在切片画面中量测厚度也变得比较困难。一般切片到达最后抛光完成后,可使用专门的微蚀液(NaOH 50/gl,加1,2-Nitrphenol 35ml/l,70下操作),并在超声波协助下,使其能咬出清晰的IMC层次,而看到各层结晶解里面的多种情况。现将锡铜合金的两种IMC性质比较如下: 两种锡铜合金IMC的比较命名分子式 含锡量W% 出现经过位置所在 颜色结晶 性能表面能-phase(Eta) Cu6Sn5 60% 高温融锡沾焊到清洁铜面时立即生成介于焊锡或纯锡与铜之间的介面 白色 球状 组织 良性IMC 微焊接强度之必须甚高 -phase(Epsilon) Cu3Sn 30% 焊后经高温或长期老化而逐渐发生 介于Cu6Sn5与铜面之间 灰色柱状 结晶 恶性IMC 将造成缩锡或不沾锡 较低只有Eta的一半,非常有趣的是,单纯Cu6Sn5的良性IMC,虽然分子是完全相同,但当生长环境不同时外观却极大的差异。如将清洁铜面热浸于熔融态的纯锡中,此种锡量与热量均极度充足下,所生成的Eta良性IMC之表面呈鹅卵石状。但若改成锡铅合金(63/37)之锡膏与热风再铜面上熔焊时,亦即锡量与热量不太充足之环境,居然长出另一种一短棒状的IMC外表(注意铜与铅是不会产生IMC的,且两者之对沾锡(wetting)与散锡(Spreading)的表现也截然不同。再者铜锡之IMC层一旦遭到氧化时,就会变成一种非常顽强的皮膜,即使薄到5层原子厚度的1.5nm,再猛的助焊剂也都奈何不了它。这就是为什么PTH孔口锡薄处不易吃锡的原因(C.Lea的名著A scientific Guide to SMT之P.337有极清楚的说明),故知焊点之主体焊锡层必须稍厚时,才能尽量保证焊锡性于不坠。事实上当沾锡(Wetting)之初,液锡以很小的接触角(Contact Angle)高温中迅速向外扩张(Spreading)地盘的同时,也另在地盘内的液锡和固铜之间产生交流,而向下扎根生成IMC,热力学方式之步骤,即在说明其假想动作的细节。 锡铜IMC的老化由上述可知锡铜之间最先所形成的良性-phase(Cu6Sn5),已成为良好焊接的必要条件。唯有这IMC的存在才会出现强度好的焊点。并且也清楚了解这种良好的IMC还会因铜的不断侵入而逐渐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论