会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

学科教育论文-对数学思维与教育的分析.doc学科教育论文-对数学思维与教育的分析.doc -- 2 元

宽屏显示 收藏 分享

页面加载中... ... 广告 0 秒后退出

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

学科教育论文对数学思维与教育的分析摘要首先探讨了一般意义上的数学思维和广义数学思维的内涵,将数学思维划分为掌握数学体系和运用数学思维的方式两部分,并详细分析了两部分的内涵以及教学中常见的问题,最后针对每一部分提出了系统化的合理建议。关键词数学思维数学结构创造能力教育1数学思维的组成简单介绍广义的数学思维主应该有两方面组成1.1关于数学体系的了解,暨数学思维的内容这是关于数学本质和内容的认识,简单的说就是数学是什么。对于数学总体结构的理解是数学思维的基础,也是一切技巧的基础。这里说的不单单是对数学概念和定理的记忆和简单运用,而是对数学原理的深刻理解。1.2数学思维的方式数学的思维方式,就是我们解决数学问题的思考的习惯和能力。也就是怎么做。解绝问题的方式有很多种,最基本的就是运用前人总结出来的解决问题的方式。然而很多时候,已有的方法是不能完全奏效的。这时候我们就需要运用我们的智慧去分析数学问题的条件,结论和特点。从而对题目进行分解转化,最终解决这个问题。在这个过程中体现出来的思维技巧和思维习惯就是数学思维方式,这也是我们所说的狭义上的数学思维。2数学体系的内涵、问题、教学重点2.1数学体系的内涵和特点(1)了解的必要性。这里所说的了解数学体系是指对数学相关内容的整体把握,这是学习数学的基本要求也是运用数学知识的基础。数学同所有的科学一样,是随着人类的文明的发展一步步发展而来的,本身就有着清晰的发展脉络由简单的数字运算发展到代数运算,由最初的自然数到复数,由初等的数学方法到分析,数学在不断拓展研究的范围,丰富研究的手段。这要求我们在学习和教学的过程中不能将数学的每一部分分割开来,要尊重数学的整体性,尊重数学本身的传承关系。和其他学科相比,数学更接近纯理论性的学科数学的每一个分支往往是从几个基本的假设或者公理出发,通过归纳、推理、演绎、建立起自身的理论体系。数学这门学科十分强调逻辑性和严密性,结构十分的清晰严密。要想使这样的一个系统称为自己手中有力的武器,必须对系统本身有整体上的了解。(2)了解的要求。如果学生能够很好的回答以下四个问题,就可以说是达到了教学的目标。①包含了什么学生必须了解自己所学数学的最大范围,也就是自己所掌握的所有数学工具的范围。②每部分的结构是什么数学由几个相对独立的部分组成,每一部分都有自身的特点,相对独立而又自成体系。每一个体系之内的知识是有前后相继的关系的,由简单到复杂,由小的方面扩展到更大的方面,引入新的方法和思想。学生应该熟练的掌握每一部分知识的结构。③各部分之间的关系是什么数学的各个部分自成体系,但又是相互紧密联系的。要真正的了解数学就要十分重视数学各个分支之间的关系,不能将数学割裂成几个孤立的部分④数学发展的历史是什么数学的历史是数学思想发展的真实体现,了解数学发展的历史能够让学生更好的认识数学思维的本质。2.2存在的问题部分学生对于数学整体结构的了解主要存在以下两种问题孤立。部分学生在学习数学的过程中,割裂知识点之间的关系,忽略知识点之间的前后发展继承的关系,不注重数学各个分支之间的交叉运用,孤立的记忆每个知识点,对数学没有总体观。由此产生的后果知识点极容易遗忘,知识结构混乱。学习新的数学知识较为困难,方法使用僵化不灵活。肤浅。部分学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的理解,仅仅停留在表面的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏多方面解决问题的能力。2.3数学体系教学重点(1)教学过程要认真描点,作好连线的准备。描点,即强化知识点,具体到每课时、每章节、每单元。在强化知识点的内容、重点、难点的同时,要有意识地把该内容向前后延伸,强调该内容是哪些知识的延续和,同时又是以后的哪些知识的准备和基础。(2)在知识的复习和应用时要尽力连线,使点成为线的元素。在最初的教学中,学生学习到的知识点是零散的、不连惯的。为了减轻学生的记忆负担,教学时要力求把知识归类、连线,使知识类别化、系统化,让学生了解一个知识点就可以掌握与之相关的内容。(3)教学中要引导学生把线结成网,以达到以点带面的记忆效果。数学知识的主线有若干条,副线也有若干条,所有的线横纵交错。每个知识点在前后向同类主线无限延伸的同时,也在向副线延伸或辐射,甚至在向其他科目、其他领域延伸,使众多的知识点、知识线,密密麻麻地形成一张无边无际的大网。3数学思维方式的内涵、问题、教学重点3.1数学思维方式的意义和内涵思维训练是教学思维论在教学实践中的具体体现。数学思维论是思维科学的一个重要分支,它是构成数学课程论、学习论的灵魂。数学教材是以逻辑思维为主线,贯穿各个知识点。教学中培养学生能力的基础是发展学生思维,发展思维不可能脱离教学内容独立进行。因此,我们可以有理由认为,在数学教学中实施思维训练是教学思维论在教学实践中的体现。数学思维方式包含两个方面(1)对于数学基本技巧的掌握比如换元,数形结合,极限法,拆分结合等等。很多新问题可以通过基本技巧的转化或者组合来解答。这些基本的技巧是前人在长期实践中对数学思维方式的经验的总结和归纳,他们不但是解决很多数学问题的有力工具,同时也很好的反应了数学的基本思维原理。(2)运用数学思维的习惯。在生活中每当我们遇到新的问题,我们都需要运用我们的智慧去分析问题,然后去选择一个最好的方法解决问题。这就是在运用我们的思维能力。良好的思维习惯能够帮助我们更快更好的解决问题。对于数学问题也不例外。解决数学问题时我们需要养成分析问题、转化问题、将未知转化为已知等良好数学思维习惯。同时能够熟练运用方程、数形结合、分类讨论等思想解决问题。这是数学教学的重要目标之一,也体现了数学对于思维的锻炼。关于数学思维习惯,G波利亚在他的经典作品怎样解题中有很好的阐释。3.2存在的问题分析中学生的数学思维品质,部分学生存在着一些明显的缺陷,具体表现为以下几点。僵化。指学生思维不够灵活,缺乏联想,只停留在课上的内容和解题思路,只会模仿、套用模式解题,一旦题型有变化,就无从下手,不能做到举一反三。迟钝。指学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。消极。指学生习惯于依赖教师的思路,往往在已做过的题型中找思路,并且很难放弃一些陈旧的解题经验,思维僵化,不能根据新问题的特点作出灵活的反应。造成这样的思维特点与学生过去所受的思维训练有很大关系有些教师在教
编号:201312091844564393    大小:13.83KB    格式:DOC    上传时间:2013-12-09
  【编辑】
2
关 键 词:
教育专区 文学作品 精品文档 学科教育
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:6次
奋斗不息上传于2013-12-09

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

教育专区   文学作品   精品文档   学科教育  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5