连杆大小头双端面铣削组合机床及夹具设计.doc

连杆大小头双端面铣削组合机床及夹具设计【含CAD图纸、说明书】

收藏

压缩包内文档预览:(预览前20页/共28页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:19352638    类型:共享资源    大小:1.84MB    格式:ZIP    上传时间:2019-05-19 上传人:机****料 IP属地:河南
50
积分
关 键 词:
含CAD图纸、说明书 连杆大小头双端面铣削组合机床及夹具设计 CAD图纸 连杆大小头双端面铣削组合机床及夹具设计 夹具及双端面组合 连杆大小头双端面铣削组合机床
资源描述:


内容简介:
毕业设计(论文)前期工作材料学生姓名:学 号:系:机械系专 业:机械工程及自动化设计(论文)题目:连杆大小头双端面铣销组合机床及夹具设计指导教师: (姓 名) (专业技术职务)材 料 目 录序号名 称数量备 注1毕业设计(论文)选题、审题表12毕业设计(论文)任务书13毕业设计(论文)开题报告含文献综述14毕业设计(论文)外文资料翻译含原文15毕业设计(论文)中期检查表1年 月注:毕业设计(论文)中期检查工作结束后,请将该封面与目录中各材料合订成册,并统一存放在学生“毕业设计(论文)资料袋”中(打印件一律用A4纸型)。 毕业设计(论文)开题报告学 生 姓 名: 学 号: 专 业:机械工程及自动化设计(论文)题目:连杆大小头双端面铣削组合机床及夹具设计指 导 教 师: 年3月19日毕 业 设 计(论 文)开 题 报 告1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:文 献 综 述1.我国组合机床的发展概况我国加入WTO以后,制造业所面临的机遇与挑战并存、组合机床行业企业适时调整战略,采取了积极的应对策略,出现了产、销两旺的良好势头,截至2005年4月份,组合机床行业企业仅组合机床一项,据不完全统计产量已达1000余台,产值达3.9个亿以上,较2004年同比增长了10%以上,另外组合机床行业增加值、产品销售率、全员工资总额、出口总产值等经济指标均有不同程度的增长,新产品、新技术较去年年均有大幅度提高,可见行业企业运营状况良好6。(1)行业企业产品结构的变化:组合机床行业企业主要针对汽车、摩托车、内燃机、农机、工程机械、化工机械、军工、能源、轻工及家电行业提供专用设备,随着我国加入WTO后与世界机床进一步接轨,组合机床行业企业产品开始向数控化、柔性化转变。 (2)行业企业的快速转变:组合机床行业企业正在以股份制、民营化等多种形式快速发展。 (3)组合机床技术装备现状与发展趋势:组合机床及其自动线是集机电于一体是综合自动化度较高的制造技术和成套工艺装备。随着技术的不断是进步,一种新型的组合机床柔性组合机床越来越受人们是亲昧,它应用多位主轴箱、可换主轴箱、编码随行夹具和刀具的自动更换,配以可编程序控制器(PLC)、数字控制(NC)等,能任意改变工作循环控制和驱动系统,并能灵活适应多种加工的可调可变的组合机床7-8。2.国外组合机床的概况80年代以来,国外组合机床技术在满足精度和效率要求的基础上,正朝着综合成套和具备柔性的方向发展。组合机床的加工精度、多品种加工的柔性以及机床配置的灵活性方面均有新的突破性进展,实现了机床工作程序软件化、工序高度集中、高效短节拍和多功能知道监控。组合机床技术的发展趋势是广泛应用数控技术,外主要的组合机床生产厂家都有自己的系列化完整的数控组合机床通用部件,在组合机床上不仅一般动力部件应用数控技术,而且夹具的转位或转角、换箱装置的自动分度与定位也都应用数控技术,从而进一步提高了组合机床的工作可靠性和加工精度5。3.组合机床的发展趋势现代制造工程从各个角度对组合机床提出了愈来愈高的要求,而组合机床也在不断的吸取新的技术成果逐步完善和发展。现代机械制造工业发展的基本特征:产品的更新换代的周期缩短,多品种,中小批量轮番生产已是普遍现象生产方式。因此,具有一定的柔性,能对多品种,中小批量生产方式做出快速的响应,是现代组合机床及其加工系统发展的必然趋势。传统的组合机床多采用继电器逻辑线路进行加工过程的自动控制,在使用中由于电气故障常使维修时间增加,影响生产率的提高。再者也满足不了现代产品更新加速的需求,采用可编程序控制器可改善上述情况。可编程序控制器(PLC)实质上是一台工业控制专业计算机,其结构原理与一般微型计算机相同。它由控制器、存储器、I/O、接口等组成,能够实现各种逻辑运算,顺序控制、定时、计数及在线监控等功能,采用面向用户的梯形图,编程简单,易于修改和使用,PLC机以其可靠性较高、控制灵活、使用方便以及能经受恶劣环境的考验在工业控制领域获得广泛的应用。但随着市场竞争的加剧和对产品需求的提高,高精度、高生产率、柔性化、多品种、短周期、数控组合机床及其自动线正在冲击着传统的组合机床行业企业,因此组合机床装备的发展思路必须是以提高组合机床加工精度、组合机床柔性、组合机床工作可靠性和组合机床技术的成套性为主攻方向。一方面,加强数控技术的应用,提高组合机床产品数控化率;另一方面,进一步发展新型部件,尤其是多坐标部件,使其模块化、柔性化,适应可调可变、多品种加工的市场需求。然而更关键的是现代通信技术在机床装备中的应用,信息通信技术的引进使得现代机床的自动化程度进一步提高,操作者可以通过网络或手机对机床的程序进行远程修改,对运转状况进行监控并积累有关数据;通过网络对远程的设备进行维修和检查、提供售后服务等。在这些方面我国组合机床装备还有相当大的差距,因此我国组合机床技术装备的高速度、高精度、柔性化、模块化、可调可变、任意加工性以及通信技术的应用将是今后的发展方向3-4。组合机床未来的发展将更多的采用调速电动机和滚珠丝杠等传动,以简化结构、缩短生产节拍;采用数字控制系统和主轴箱、夹具自动更换系统,以提高工艺可调性;以及纳入柔性制造系统等。在组合机床这类专用机床中,回转式多工位组合机床和自动线占有很重要的地位。因为这两类机床可以把工件的许多加工工序分配到多个加工工位上,并同时能从多个方向对工件的几个面进行加工,此外,还可以通过转位夹具(在回转工作台机床上)或通过转位、翻转装置(在自动线上)实现工件的五面加工或全部加工,因而具有很高的自动化程度和生产效率,被汽车、摩托车和压缩机等工业部门所采用。由于我本次研究的是连杆大小头双端面铣削组合机床及夹具设计,我下面来讲述一下有关夹具设计的要求。4.对专用夹具的基本要求1保证工件的加工精度专用夹具应有合理的定位方案,标注合适的尺寸、公差和技术要求,并进行必需的精度分析,确保夹具能满足工件的加工精度要求9-10。2提高生产效率应根据工件生产批量的大小设计不同复杂程度的高效夹具,以缩短辅助时间,提高生产效率。3.工艺性好专用夹具的结构应简单、合理,便于加工、装配、检验和维修。专用夹具的制造属于单件生产。当最终精度由调整或修配保证时,夹具上应设置调整或修配结构。如设置适当的调整间隙,采用可修磨的垫片等。4.使用性好专用夹具的操作应简便、省力、安全可靠。排屑应方便,必要时可设置排屑结构。5.经济性好除考虑专用夹具本身结构简单、标准化程度高、成本低廉外,还应根据生产纲领对夹具方案进行必要的经济分析,以提高夹具在生产中的经济效益12。5.本次设计目的及意义能够运用大学所学的知识能够得到巩固,进一步增强自己在机械制造工艺学方面的知识,把机床夹具设计熟练掌握,熟悉连杆工件的安装的精度要求,为自己走上社会的岗位提供丰富的理论上的知识,为以后的发展奠定坚实的基础。参考文献 1 徐旭东,周菊琪. 现代组合机床技术及其发展M. 北京:中国机械工程,1995. 2 许晓肠. 专用机床设备设计M. 重庆:重庆大学出版社,2003. 3 金振华. 组合机床及其调整与应用M. 北京:机械工业出版社,1990. 4 李庆余,张佳. 机械装备设计M. 北京:机械工业出版社,2003. 5 戴曙. 金属切削机床设计M. 北京:机械工业出版社,1993. 6 李华. 天津大学机床设计图册M. 上海:科学技术出版社,1984. 7 邱宣怀. 机械设计M. 北京:高等教育出版社,2003. 8 吴宗泽. 机械设计实用手册M. 北京:化学工业出版社,2000. 9 龚桂. 机械设计课程设计指导书M. 北京:高等教育出版社,1990. 10 徐名聪. 机床夹具标准件三维图形库的构建J. 机械工业出版社,2004,1998,(2):56-59. 11 王诚谊. 组合机床计算机辅助设计J交通与计算机,1989,(2):12-16. 12 丁然,马洪波. 钻削类组合机床主轴轴承部件的选择J轴承,2002,(2): 13-15. 13 谈武宗,于洪斌. 钻攻的设计和使用J. 组合机床与自动化术,2000,(2):56-59. 14 顾维邦. 金属切削机床概论M. 北京:机械工业出版社,2002. 15 徐景辉. 机床装配M. 四川:四川人民出版社,1982. 16 孔恒,陈作模. 机械原理M. 北京:高等教育出版社,2001. 17 濮良贵. 机械设计M. 北京:高等教育出版社,2001.毕 业 设 计(论 文)开 题 报 告 本课题要研究或解决的问题和拟采用的研究手段(途径):1.需要解决的问题影响加工精度的因素及其分析:1. 加工原理误差2. 工艺系统的几何误差a) 刀具制造误差与磨损b) 夹具的制造误差与磨损c) 工件的安装误差、调整误差以及度量误差d) 机床的几何误差3. 工艺系统受力变形对加工精度的影响a) 工艺系统的受力变形b) 工艺系统的刚度c) 工艺系统受力变形对加工精度的影响4. 工艺系统热变形对加工精度的影响a) 工艺系统热变形的热源b) 工艺系统热变形对加工精度的影响c) 环境温度变化对加工精度的影响d) 对工艺系统热变形的控制2.拟采用的研究手段保证和提高加工精度的主要途径:1. 直接减少或消除误差2. 补偿或抵消误差3. 均分与均化误差4. 转移变形和转移误差5. “就地加工”,保证精度6. 加工过程中主动控制误差毕 业 设 计(论 文)开 题 报 告指导教师意见:1对“文献综述”的评语:2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测: 指导教师: 年 月 日所在专业审查意见: 负责人: 年 月 日 毕业设计说明书(论文)作 者: 学 号: 系:机械系专 业:机械工程及自动化题 目:连杆大小头双端面铣削组合机床及夹具设计讲师 指导者: (姓 名) (专业技术职务)评阅者: (姓 名) (专业技术职务) 年5月毕业设计说明书(论文)中文摘要根据设计任务书的要求,本设计说明书针对连杆大小头双端面铣削组合机床的设计及专用夹具设计进行说明。主要内容包括组合机床工艺方案的制定、组合机床配置型式的选择、组合机床总体设计以及专用夹具设计。全文主要包括组合铣床的总体设计和专用夹具设计两部分。机床总体设计主要是在选定工艺方案并确定机床配置形式、结构方案基础上确定“三图一卡”,专用夹具设计根据“三图一卡”,整理编绘出夹具设计图,重点分析夹紧机构装置,经过各种方案的比较,最后确定最优方案。达到提高劳动生产率,降低劳动强度,保证加工质量。关键词 组合机床 铣削 专用夹具 毕业设计说明书(论文)外文摘要Title The link of the modular machine tool and jig for mill the size of the first double-face of the connecting rod AbstractAccording to designs the project description the request, This design instruction booklet carries on the explanation in view of the connecting rod reducing socket double face milling aggregate machine-tool design and the unit clamp design. Main content including aggregate machine-tool craft plan formulation, aggregate machine-tool configuration choice, unit clamp design as well as headstock design.The full text mainly includes combines the milling machine the system design and unit clamp designs two parts. The engine bed system design mainly is in the designation craft plan and the determination engine bed disposition form, in the structure plan foundation determined a three charts card, the unit clamp design basis a three charts card, A fixture design compilation order, analyzed clamping device, passes through each kind of plan comparison, finally determines the most superior plan. In addition, in order to enhance the labor productivity, reduces the labor intensity, guaranteed the processing quality.Keywords Machine Tool Milling Unit Clamp 目 录1 绪论 11.1 组合机床的特点 11.2 组合机床的分类和组成 21.3 组合机床的方案选择 22 组合机床总体描述 32.1 组合铣床工艺方案的制定 32.1.1 被加工零件的特点32.1.2加工的工序和加工精度的要求42.1.3 工件的生产方式 62.2 确定切削用量、切削力和切削功率 62.2.1 切削用量的选择原则62.2.2 连杆工艺方案确定102.2.3 铣削用量的选择112.2.4 确定切削力、切削功率122.3 铣端面组合机床配置型式的选择 122.4 影响总体布置的因素 132.5 组合铣床的总体分析三图一卡 142.5.1 被加工零件的工序图142.5.2 被加工零件的加工示意图152.5.3 组合机床联系尺寸图的绘制172.5.4 生产率计算卡213 组合机床专用夹具设计 223.1 组合机床专用夹具的特点 223.2 机床专用夹具的作用及设计方法 233.3 定位的选择 24结论 25致谢 26参考文献 27International Journal of Machine Tools received in revised form 22 January 2006; accepted 17 February 2006 Available online 18 April 2006 Abstract In this paper, vibration cutting (VC) has been applied to boring and drilling processes using a vibration device we developed. We analyzed the effect of vibration in boring by investigating the surface roughness of workpiece with the help of Taguchi method and analysis of variance (ANOVA). It has been shown that the utilization of VC in boring improves the surface roughness prominently. The shading-area method we proposed can be employed as a simple and feasible approach for the analysis of burrs in intersecting holes. High-frequency vibration boring can reduce the burr formation in intersecting holes effectively. The experimental results show that the utilization of VC reduces the burrs in intersecting holes noticeably. r 2006 Elsevier Ltd. All rights reserved. Keywords: Vibration cutting; Drilling; Boring; Burr; Intersecting hole 1. Introduction Vibration cutting (VC) is a technique in which high or low frequency of vibration is superimposed to the cutting tool or the workpiece during a machining operation in order to achieve better cutting performance. This technique had been employed in the precision drilling of wood 1,2 and low carbon steel 3. The use of low frequency and ultrasonic vibration had been found to be helpful in reducing burr size and prolong tool life in drilling aluminum and glass-fi ber reinforced plastics 4,5. Adachi et al. 4 developed an electro-hydraulic servo-system with a maximum frequency of 100Hz to produce a low-frequency vibration drilling in aluminum and obtained a decrease in burr size of 525%. Onikura et al. 6,7 utilized a piezo- actuator to generate 40KHz of ultrasonic vibration in the drilling spindle. They found that the use of ultrasonic vibration reduces the friction between chip and rake face, resultingincuttingchipstobethinner,andthen considerably reduces the cutting forces. Thus the utilization of VC decreases the hole oversize, reduces the friction between chip and rake face and improves the surface roughness. Chern and Lee 8 proposed a new approach to obtain the desired vibration from the workpiece side. Through extensive experiments with a twist drill size of 0.5mm, they found that hole oversize, dislocation of the hole center and surface roughness of the drilled hole inner surface could be improved with the increase of vibration frequency and amplitude. Jin and Murakawa 9 had found that the chipping of the cutting tool can be effectively prevented by applying ultrasonicVCandthetoollifecanbeprolonged accordingly. Takeyama and Kato 5 found that the mean thrust force in drilling can be greatly reduced under ultrasonic VC. Drilling chips are thinner and easier to escape from the drilled hole. Burr formation at the entrance and the exit sides is greatly retarded with the low cutting forces. Thus the overall drilling quality is improved with the employment of VC. Besides drilling, turning is another fi eld of VC applica- tion. Materials like glass with poor machinability are found to be machined effectively with the assistance of VC. The method of ultrasonic VC had been employed to the turning of machinable glass ceramics 10 and soda-lime glass 11. A surface roughness of 0.03mm in Rmaxwas successfully obtained in face turning of soda-lime glass by applying VC. Ultra-precision ductile cutting of glass could be achieved by applying ultrasonic vibration in the cutting direction. ARTICLE IN PRESS /locate/ijmactool 0890-6955/$-see front matter r 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijmachtools.2006.02.017 ?Corresponding author. Tel.: +886553426014145; fax: +88655312062. E-mail address: cherngl.tw (G.-L. Chern). In general, the steel cannot be machined by diamond tools due to excessive tool wear. But under ultrasonic VC, diamond turning of stainless steel was realized and an optical quality mirror of stainless steel with a surface roughness of 0.026mm in Rmaxwas obtained 12. Shamoto and Moriwaki 13 proposed an elliptical-vibration-cutting method by introducing synchronized two-directional vi- bration. Hardened die steel could be machined effectively in their turning experiments 14 with low cutting force, high quality surface and long tool life. The manufacture of industrial valves often involves drilling and boring operations, generating intersecting holes. One major problem caused is the formation of burrs inside the valves. Deburring of intersecting holes is one of the most diffi cult deburring tasks faced by many industries. Many deburring processes are not applicable to most intersecting-hole cases, especially when small-diameter drilling is involved. Burrs in intersecting holes may hinder air or liquid fl ow inside the valve in real application, leading to malfunction or undesirable consequence. In this paper, a vibration-boring device was designed and fabricated. A piezoelectric actuator is utilized on the end of the boring bar to generate the desired axial vibration. Surface roughness of the workpiece after boring, without and with VC, was investigated. With the help of Taguchi method, infl uence and contribution ratio of each machin- ing parameter can be determined. Burr formation in intersecting holes was defi ned as the region shaded by burr within the circular area after drilling and boring. Burr size was then measured through an image-processing software by calculating the number of black pixels in the captured image. Through the experimental results we discussed the effect of VC on boring and drilling. 2. Design and fabrication of vibration-boring device The basic idea of employing VC on the boring operation is schematically illustrated in Fig. 1. Vibration is applied to the boring bar in the feed direction of the workpiece. To ensure that the boring bar is vibrating in the axial direction of the workpiece, two linear guideways were employed and arranged symmetrically in conjunction with the holding blocks, as shown in Fig. 2. Piezoelectric actuators had been utilizedtoproducehigh-frequencyvibrationinthe previous VC researches 68,13,14. Piezoelectric actuators possess the characteristics of fi ne precision, quick response and large driving force. Thus in this paper we attached a piezoelectric actuator to the end of the boring bar to generate the desired vibration. Four outwall blocks were connected to accommodate the guideways, the holding blocks and the piezoelectric actuator. The whole vibration- boring device is shown in exploded form in Fig. 3. Photo of the device is shown in Fig. 4. The design for this vibration-boring device is based on the following considerations. 1. Due to the space limitation, the device is designed for the boring bar with a diameter of 12mm and a length of 150mm. The boring bar is fastened to the holding block by the screws in Fig. 4. 2. The whole structure must possess enough stiffness to withstand the dynamic loads during the boring operation. Each element of the device is made of stainless steel with high strength to provide enough stiffness. ARTICLE IN PRESS Fig. 1. Vibration cutting for boring operation. Fig. 2. Linear guideway and holding block. Fig. 3. Vibration-boring device in exploded form. G.-L. Chern, J.-M. Liang / International Journal of Machine Tools (2) boring the inner wall surface of the tube ARTICLE IN PRESS Fig. 5. Photo of burrs in intersecting holes. Fig. 6. Image processing of burrs. Table 2 Experimental layout showing levels of machining parameters in vibration- boring No.Param. ABCD 11111 21222 31333 42123 52231 62312 73132 83213 93321 Fig. 7. Photo of vibration-drilling worktable. G.-L. Chern, J.-M. Liang / International Journal of Machine Tools (B) vibration frequency in drilling; (C) drilling feed; and (D) spindle speed in drilling, while the response function is the number of pixels of the captured image. The range and number of levels of the parameters are selected as listed in Table 3. The parameters are chosen based on our previous study in drilling with VC 8, knowing that feed and spindle speed in drilling are important in burr formation. The natural frequency of the vibration worktable was found to be around 13kHz. The levels of the parameters are chosen based on the results of our preliminary tests and the constraints of the machine tools we employed. The feed, spindle speed and depth of cut in boring are kept at constant of 0.09mm/rev, 270rpm and 0.08mm, respectively. The experimental layout for the machining parameters is the same as shown in Table 2 since the same orthogonal array is chosen. 4. Results and discussions 4.1. Vibration-boring experiments The objective of the experiments is to optimize the parameters to get better surface roughness in boring with VC. Table 4 shows the actual data measured along with their computed S/N ratio. y is the surface roughness (Ra) measured in mm. The response table for mean S/N ratio is shown in Table 5. We can predict the optimal combination of machining parameters in vibration-boring to be A3 (310rpm), B2(1kHz), C2(0.097mm/rev) and D1(0.04mm) by selecting the largest value of S/N ratio for each parameter. The results of ANOVA for the response function, i.e. surface roughness in vibration boring, are given in Table 6. Contribution ratio of each parameter can be seen in the table. The contribution ratios of spindle speed (A) and depth of cut (D) are 17.6% and 2.7%, respectively. It is found that feed (C) has a dominant effect in vibration boring, of almost 50% in contribution ratio. This analysis result is very reasonable since tool mark produced by feed per revolution directly determines the surface roughness in a boring operation. Vibration frequency (B) also has some infl uence on the surface roughness, of about 30% in contribution ratio. In this study the optimal level of vibration frequency we obtained is B2(1kHz) instead of B3(14kHz). Basic understanding is that when frequency is higher, the performance of VC will be better 7. This is true only when the cutting tool is not damaged by the high-frequency vibration. Jin and Murakawa 9 pointed out that tool wear is more prominent as frequency increases, as also found by ARTICLE IN PRESS Table 3 Machining parameters and their levels in intersecting-hole experiments LevelParam. (A) Frequency in boring (kHz) (B) Frequency in drilling (kHz) (C) Drilling feed (mm/rev) (D) Spindle speed in drilling (rpm) 1000.021000 2110.032000 314100.043000 Table 4 Results of vibration-boring experiments and their corresponding S/N ratio No.ABCDyS/N 118000.090.041.494?3.484 218010.0970.081.159?1.285 3180140.1050.121.601?4.089 427000.0970.121.566?3.896 527010.1050.041.574?3.938 6270140.090.081.435?3.139 731000.1050.081.652?4.358 831010.090.121.241?1.876 9310140.0970.041.130?1.062 Table 5 Response table for S/N ratio in vibration boring ABCD 1?2.953?3.913?2.833?2.828 2?3.658?2.366?2.081?2.927 3?2.432?2.764?4.128?3.287 OptimalA3B2C2D1 Table 6 ANOVA in vibration-boring experiments Param.Sum of squares, S Degree of freedom, f Variance, VContribution ratio, P (%) A2.27121.13617.6 B3.87021.93529.9 C6.43423.21749.8 D0.35020.1752.7 Total12.9258100 G.-L. Chern, J.-M. Liang / International Journal of Machine Tools (b) with VC of 1kHz. 0 0.5 1 1.5 0Hz100Hz1kHz14kHz frequency Ra (m) 0 5 10 Rmax (m) Fig. 8. Variation of surface roughness vs. vibration frequency (270rpm, 0.09mm/rev, 0.04mm). G.-L. Chern, J.-M. Liang / International Journal of Machine Tools (b) with 100Hz drilling and 14kHz boring. G.-L. Chern, J.-M. Liang / International Journal of Machine Tools & Manufacture 47 (2007) 133140139 2 J. Kumabe, T. Sabuzawa, Study on the precision drilling of wood (2nd report)drilling force and its accuracy, Journal of JSPE 38 (5) (1972) 456461 (in Japanese). 3 T. Koyama, K. Adachi, K. Murakami, Study on vibratory drilling (2nd Report)comparison of conventional drilling with vibratory drilling, Journal of JSPE 43 (1) (1977) 5560 (in Japanese). 4 K. Adachi, N. Arai, S. Harada, K. Okita, S. Wakisaka, A study on burr in low frequency vibratory drillingdrilling of aluminum, Bulletin of JSPE 21 (4) (1987) 258264. 5 H. Takeyama, S. Kato, Burrless drilling by means of ultrasonic vibration, Annals of C
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:连杆大小头双端面铣削组合机床及夹具设计【含CAD图纸、说明书】
链接地址:https://www.renrendoc.com/p-19352638.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!