向量组的线性相关习题.ppt_第1页
向量组的线性相关习题.ppt_第2页
向量组的线性相关习题.ppt_第3页
向量组的线性相关习题.ppt_第4页
向量组的线性相关习题.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章 向量组的线性相关性,一、向量的定义,定义: n 个有次序的数a1, a2, , an所组成的数组称为n维向量, 这n个数称为该向量的n个分量, 第 i 个数ai 称为第 i 个分量. 分量全为实数的向量称为实向量, 分量为复数的向量称为复向量. 行向量; 列向量.,向量的相等; 负向量; 零向量.,向量按照矩阵运算法则进行运算.,二、向量的线性运算,向量加法和数乘向量运算称为向量的线性运算,满足下列八条运算规则:,(1) 加法交换律: a +b = b + a ; (2) 加法结合律: (a +b ) + g = a + ( b +g ) ; (3) 对任一向量a , 有a +O = a; (4) 对任一向量a, 存在负向量a , 有a +(a ) = O ; (5) 1 a = a ; (6) 数乘结合律: k(l a) = (l k)a ; (7) 数乘对向量加法的分配律: k( a + b ) = ka + kb ; (8) 数量加法对数乘的分配律: ( k + l ) a = ka + l a ;,其中a, b, g为n维向量, 1, k, l为数, O为零向量.,除了上述八条运算规则, 显然还有以下性质:,(1) 0a =O; (2) 若 ka = O, 则或者k=0, 或者a = O; (3) 向量方程: a + x = b, 有唯一解 x = a - b ;,其中a, b 为n维向量, 0为数零, k任意数, O为零向量.,三、线性组合,若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组.,定义: 给定向量组A: 1, 2, , m, 对于任何一组实数k1, k2, ,km, 向量 k11 + k22 + + kmm 称为向量组A: 1, 2, m一个线性组合, k1, k2, ,km称为这个线性组合的系数.,给定向量组A: 1, 2, , m和向量b, 如果存在一组数1, 2, ,m, 使 b = 11 + 22 + + mm 则向量b是向量组A的线性组合, 这时称向量b能由向量组A线性表示.,定理1: 向量b能由向量组A线性表示的充分必要条件是矩阵A=(1, 2, , m)与B=(1, 2, , m, b)的秩相等.,定义: 设有两向量组 A: 1, 2, , m 与 B: 1, 2, , s . 若B组中的每一个向量都能由A组线性表示, 则称向量组B能由向量组A线性表示; 若向量组B与向量组A可以相互线性表示, 则称这两个向量组等价.,四、线性相关性,定义: 给定向量组A: 1, 2, , m , 如果存在不全为零的数 k1, k2, ,km , 使 k11 + k22 + + kmm = O 则称向量组A是线性相关的, 否则称它是线性无关.,定理2: 向量组 1, 2, , m (当 m2 时)线性相关的充分必要条件是1, 2, , m中至少有一个向量可由其余 m1个向量线性表示.,定理3: 向量组1, 2, , m线性相关的充分必要条件是它所构成的矩阵A=(1, 2, , m)的秩小于向量个数m; 向量组线性无关的充分必要条件是R(A)=m.,定理4: (1)若向量组A:1, 2, , m线性相关, 则向量组B: 1, 2, , m, m+1也线性相关; 反言之, 若向量组B线性无关, 则向量组A也线性无关.,(2)设,即j 添上一个分量后得向量j. 若向量组A: 1, 2, , m线性无关, 则向量组B: 1, 2, , m也线性无关; 反言之, 若向量组B线性相关, 则向量组A也线性相关.,(3) m个n维向量组成的向量组当维数n小于向量个数m时一定线性相关,(4) 设向量组A: 1, 2, , m线性无关, 而向量组 B: 1, 2, , m, 线性相关, 则向量 必能由向量组A线性表示, 且表示式是唯一的.,定义: 设有向量组A, 如果在A中能选出r 个向量 A0: 1, 2, r, 满足 (1)向量组A0: 1, 2, r, 线性无关; (2)向量组A中任意r+1个向量(如果存在的话)都线性相关. 那末称向量组A0是向量组A的一个最大线性无关向量组(简称最大无关组). 最大无关组所含向量个数r 称为向量组的秩.,五、向量组的秩,定理1: 矩阵的秩等于它的列向量组的秩, 也等于它的行向量组的秩.,定理2: 设向量组B能由向量组A线性表示, 则向量组B的秩不大于向量组A的秩, 即 R(B)R(A).,推论1: 等价的向量组的秩相等.,推论2: 设Cmn = Ams Bsn, 则 R(C)R(A), R(C)R(B).,推论3: 设向量组B是向量组A的部分组, 若向量组B线性无关, 且向量组A能由向量组B线性表示, 则向量组B是向量组A的一个最大无关组.,六、向量空间,定义: 设V为n维向量的集合, 如果集合V非空, 且集合V对于加法及乘数两种运算封闭, 那么就称集合V为向量空间.,集合V对于加法及乘数两种运算封闭是指: 若, V, 则 + V; 若 V, R, 则 V.,一般地, 由向量组a1, a2, , am所生成的向量空间,为:,七、子空间,定义: 设有向量空间V1及V2, 若有V1V2. 则称V1是V2的子空间.,八、基与维数,定义: 设V是向量空间, 如果有r 个向量1, 2, , rV, 满足 (1) 1, 2, , r 线性无关; (2) V中任一向量都可由1, 2, , r 线性表示. 则称向量组1, 2, , r为向量空间V的一个基, 称整数r 为向量空间V的维数, 并称V为r 维向量空间.,九、齐次线性方程组,向量方程; 解向量.,解向量的性质,(1) 若x = 1, x = 2为Ax = 0的解, 则 x =1 + 2也是Ax = 0的解.,(2) 若x = 1为Ax = 0的解, k为数, 则 x = k1也是 Ax = 0的解.,由以上两个性质可知, 方程组的全体解向量所组成的集合, 对于加法和数乘运算是封闭的, 因此构成一个向量空间, 称此向量空间为齐次线性方程组 Ax = 0的解空间.,定义: 如果向量组1, 2, , t 为齐次线性方程组Ax = 0的解空间的一组基, 则向量组1, 2, , t 称为齐次线性方程组Ax = 0的基础解系.,称向量组1, 2, , t为齐次线性方程组Ax = 0的基础解系, 如果,(1) 1, 2, , t 是Ax = 0的一组线性无关的解; (2) Ax = 0的任一解都可由1, 2, , t 线性表出.,方程组Ax = 0的基础解系是不唯一的.,如果向量组1, 2, , t 为齐次线性方程组Ax = 0的一组基础解系, 那么, Ax = 0的通解可表示为: x = k11 + k22 + + ktt 其中k1, k2, , ktt 为任意常数.,求齐次线性方程组的基础解系,1. 用初等行变换将系数矩阵A化为最简行阶梯形:,2. 将第r+1, r+2, , n列的前r个分量反号, 得解1, 2, ,n-r的前r个分量:,3. 将其余nr个分量依次组成 nr 阶单位矩阵, 于是得齐次线性方程组的一个基础解系:,十、非齐次线性方程组,(1) 设 x=1 及 x=2 都是方程组 Ax=b 的解, 则 x=12为对应齐次方程组Ax=0的解.,(2) 设 x= 是方程组 Ax=b 的解, x= 是方程组 Ax=0 的解, 则 x=+ 仍为方程组 Ax=b 的解.,解向量的性质,求非齐次线性方程组的特解,用初等行变换将增广矩阵B化为最简行阶梯形:,当dr+10时, 则方程组 Ax=b 无解; 否则, 得齐次线性方程组Ax=0的基础解系1, 2, ,n-r和非齐次线性方程组Ax=b的一个特解: *=(d1, d2, , dr , 0, , 0)T.,一、向量组线性相关性的判定,典 型 例 题,研究这类问题一般有两个方法.,方法1. 从定义出发,令 k11 + k22 + + kmm = 0,即,整理得齐次线性方程组:,(1),若齐次线性方程组(1)只有零解, 则1, 2, , m 线性无关; 否则, 1, 2, , m线性相关.,方法2. 利用矩阵的秩与向量组的秩之间的关系,给出一组n维向量1, 2, , m, 就得到一个相应的矩阵A=(1, 2, , m), 求R(A), 则 若R(A)=m, 则 1, 2, , m线性无关; 若R(A)m, 则 1, 2, , m线性相关.,例1: 研究下列向量组的线性相关性,解一: 令 k11 + k22 + k33 = 0,即,整理得齐次线性方程组:,(2),上述齐次线性方程组(2)的系数行列式为:,齐次线性方程组(2)有非零解, 故1, 2, 3线性相关.,解二: 构造矩阵,A = (1, 2, 3) =,则,由 R(A) = 2 3 得, 向量组1, 2, 3线性相关.,例2: 设向量组1, 2, , r (r 2)线性相关, 证明: 存在不全为零的数 t1, t2, , tr , 使得对任何向量, 都有 1 + t1, 2 + t2, , r + tr , 线性相关.,分析: 我们从定义出发, 考察向量方程:,k1(1 + t1 ) + k2(2 + t2 ) + + kr(r + tr ) = 0,即向量方程:,k11 + k22 + + krr + (k1t1 + k2t2 + + krtr ) = 0,是否有某组不全为零的数k1, k2, , kr , 而使得对任何向量, 恒有非零解, 因此可得如下证明:,证明: 因为向量组1, 2, , r 线性相关, 所以, 存在不全为零的数k1, k2, , kr , 使得 k11 + k22 + + krr = 0.,因为 r 2, 所以必有非零解, 设(t1, t2, , tr )为其一个非零解, 则对任意向量 , 都有,再考察方程组: k1x1 + k2x2 + + krxr = 0.,k11 + k22 + + krr + (k1t1 + k2t2 + + krtr ) = 0,即,k1(1 + t1 ) + k2(2 + t2 ) + + kr(r + tr ) = 0.,线性相关.,由k1, k2, , kr不全为零得:, 1 + t1, 2 + t2, , r + tr ,二、求向量组的秩,求一个向量组的秩, 可以把它转化为矩阵的秩来求, 这个矩阵是由这组向量为行(列)向量所排成的. 若矩阵A经过初等行(列)变换化为矩阵B, 则A和B中任何对应的列(行)向量组都有相同的线性相关性.,如果向量组的向量以列(行)向量的形式给出, 把向量作为矩阵的列(行), 对矩阵作初等行(列)变换, 这样,不仅可以求出向量组的秩, 而且可以求出最大线性无关组.,例3: 求向量组,的秩.,解: 作矩阵A=(1, 2, 3, 4, 5), 对A作初等行变换化为阶梯形.,故, R(A)=3, 从而向量组1, 2, 3, 4, 5的秩为3.,又1, 2, 4是向量组1, 2, 3, 4, 5的一个最大线性无关组.,所以1, 2, 4也是向量组1, 2, 3, 4, 5的一个最大线性无关组.,三、基础解系的证法,例4: 证明与基础解系等价的线性无关的向量组也是基础解系.,分析: 要证明某一向量组是方程组Ax=0的基础解系, 需要证明三个结论: (1) 该组向量都是方程组的解; (2) 该组向量线性无关; (3) 方程组的任一解均可由该向量组线性表示.,证明: 设1, 2, , t是方程组Ax=0的一个基础解系, 1, 2, ,m是与1, 2, , t等价的线性无关的向量组. 由于等价的线性无关向量组所含向量个数相同,所以, 这两个向量组所含向量个数相等, 即 m = t .,(1) 由向量组的等价关系易知, i ( i = 1, 2, , t )可以表示成 1, 2, , t 的线性组合. 而方程组 Ax=0 的解的线性组合仍然是原方程组的解, 故1, 2, ,t 仍是方程组 Ax=0 的解.,(2) 由题设知, 1, 2, ,t 是线性无关的.,(3) 设为方程组Ax=0的任一解, 则可由1, 2, , t 线性表示, 由向量组的等价性, 1, 2, , t 均可由1, 2, ,t 线性表示, 故也可由1, 2, ,t 线性表示.,故由定义知, 1, 2, ,t 也是方程组Ax=0 的一个基础解系.,五、解向量的证法,例5: 设*是非齐次线性方程组Ax=b的一个解, 1, 2, , nr是其导出组(对应齐次线性方程组Ax=0)的一个基础解系, 证明: (1) *, 1, 2, , nr 线性无关; (2) *, *+1, *+2, , *+nr 是方程组Ax=b的nr+1个线性无关的解; (3) 方程组Ax=b的任一解x都可以表示为这nr+1个解的线性组合, 而且组合系数之和为1.,证明(1): 令,k0* + k11 + k22 + + knr nr = 0 (1),其中必有k0=0.,否则有,由于1, 2, , nr 是其对应齐次线性方程组Ax=0的基础解系, 故等式右边的线性组合必为 Ax=0 的解,而等式左边*是非齐次线性方程组Ax=b 的解. 矛盾. 所以有 k0=0 .,将 k0=0 代如(1)式得,k11 + k22 + + knr nr = 0,由于1, 2, , nr 线性无关, 因此只能有 k0 = k1 = k2 = = knr = 0,所以, *, 1, 2, , nr 线性无关.,(2) 由线性方程组解的性质知, *, *+1, *+2, , *+nr 都是Ax=b的解, 以下证它们线性无关.,k0* + k1(*+1) + + knr(*+nr ) = 0,令,得,(k0 + k1 + + knr )* + k11 + + knrnr = 0,类似于(1)的证明方式, 可得,故, *, *+1, *+2, , *+nr 是方程组Ax=b的 nr+1个线性无关的解;,*, *+1, *+2, , *+nr 是线性无关的.,(3) 设x为方程组Ax=b的任一解, 则 x可表为,x = *+ c11 + + cnrnr,= *+ c1(*+1*) + + cnr (*+ nr *),= (1c1 cnr )*+c1(*+1)+c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论