Fourier变换的有趣解释.ppt_第1页
Fourier变换的有趣解释.ppt_第2页
Fourier变换的有趣解释.ppt_第3页
Fourier变换的有趣解释.ppt_第4页
Fourier变换的有趣解释.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Fourier变换中有关问题的有趣解释,2011.9,傅立叶变换,傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。 冈萨雷斯版里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数或者分析一个图像。,傅立叶变换有很多优良的性质,时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以ejwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点),信号在频率域的表现,在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化快慢。高频分量解释信号的突变部分,而低频分量决定信号的整体形象。,在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量。也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。书面一点说就是,傅里叶变换提供了一条从空域到频率自由转换的途径。,对图像处理而言,以下概念非常重要:,图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪声,更多是两者的混合; 低频分量:图像变化平缓的部分,也就是图像轮廓信息; 高通滤波器:让图像使低频分量抑制,高频分量通过 低通滤波器:与高通相反,让图像使高频分量抑制,低频分量通过; 带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高都抑制; 带阻滤波器,是带通的反。,傅立叶变换在图像处理中的作用,傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量 。 傅立叶变换在图像处理的以下几个方面都有重要作用 :,1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量,3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;,什么是卷积,我们都知道卷积公式,但是它有什么物理意义呢?平时我们用卷积做过很多事情: 信号处理时,输出函数是输入函数和系统函数的卷积; 在图像处理时,两组幅分辨率不同的图像卷积之后得到的互相平滑的图像可以方便处理。 卷积甚至可以用在考试作弊中,为了让照片同时像两个人,只要把两人的图像卷积处理即可,这就是一种平滑的过程。 可是我们怎么才能真正把公式和实际建立起一种联系呢?生活中就有实例:,比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应。,好,这样就和信号系统建立起来意义对应的联系。下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的脸足够光滑,如果你说你长了很多青春痘,甚至整个脸皮处处连续处处不可导,那难度太大了,我就无话可说了),你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。好了,那么,下面可以进入核心内容卷积了!,如果你每天都到楼下去打台球,那么老板每天都要扇你一巴掌,不过当老板打你一巴掌后,你5分钟就消肿了,所以时间长了,你甚至就适应这种生活了如果有一天,老板忍无可忍,以0.5秒的间隔开始不间断的扇你的过程,这样问题就来了:第一次扇你鼓起来的包还没消肿,第二个巴掌就来了,你脸上的包就可能鼓起来两倍高,老板不断扇你,脉冲不断作用在你脸上,效果不断叠加了,这样这些效果就可以求和了,结果就是你脸上的包的高度岁时间变化的一个函数了(注意理解)!,如果老板再狠一点,频率越来越高,以至于你都辨别不清时间间隔了,那么,求和就变成积分了。可以这样理解,在这个过程中的某一固定的时刻,你的脸上的包的鼓起程度和什么有关呢?和之前每次打你都有关!但是各次的贡献是不一样的,越早打的巴掌,贡献越小,这就是说,某一时刻的输出是之前很多次输入乘以各自的衰减系数之后的叠加而形成某一点的输出,然后再把不同时刻的输出点放在一起,形成一个函数,这就是卷积。,卷积之后的函数就是你脸上的包的大小随时间变化的函数。本来你的包几分钟就可以消肿,可是如果连续打,几个小时也消不了肿了,这难道不是一种平滑过程么?反映到公式上,f(a)就是第a个巴掌,g(x-a)就是第a个巴掌在x时刻的作用程度,乘起来再叠加就ok了,这就是卷积! 最后提醒各位,请勿亲身尝试,卷积的另一种解释,信号处理的任务就是寻找和信号集合对应的一个集合,然后在另外一个集合中分析信号,Fourier变换就是一种,它建立了时域中每个信号函数与频域中的每个频谱函数的一一对应关系,这是元素之间的对应。 那么运算之间的对应呢,在时域的加法对应频域中的加法,这就是FT线性性的体现,那么时域的乘法对应频域什么呢?我们就把它叫卷积。,模板运算与卷积定理,在时域内做模板运算,实际上就是对图像进行卷积。 模板运算是图像处理一个很重要的处理过程,很多图像处理过程,比如增强、去噪、边缘检测中普遍用到。根据卷积定理,时域卷积等价与频域乘积。因此,在时域内对图像做模板运算就等效于在频域内对图像做滤波处理。 比如说一个均值模板,其频域响应为一个低通滤波器;在时域内对图像作均值滤波就等效于在频域内对图像用均值模板的频域响应对图像的频域响应作一个低通滤波。,相关和卷积,相关和卷积是两个完全不同的概念,这一点应特别注意,虽然在数学计算上他们有类似的地方。 相关最早是用来概率论中描述随机变量之间关系的概念,如相关系数。 为了实现信

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论