重载汽车后驱动桥结构设计说明书.docx

重载汽车后驱动桥结构设计【5张CAD图纸和说明书】

收藏

压缩包内文档预览:(预览前20页/共69页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:21538009    类型:共享资源    大小:2.36MB    格式:RAR    上传时间:2019-08-17 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
5张CAD图纸和说明书 重载 汽车 驱动 结构设计 cad 图纸 以及 说明书 仿单
资源描述:
重载汽车后驱动桥结构设计【5张CAD图纸和说明书】,5张CAD图纸和说明书,重载,汽车,驱动,结构设计,cad,图纸,以及,说明书,仿单
内容简介:
?C2?T? ?1:2? ? ? ? 45m12?9?115? ?246?Z?d?R?2014.5.20??210240HBW?0.015A? ? ? ?2014.5.20?mz?d?hs?c?AhahfdasB40?480?22.66?245.9710.212.46484.510.320.4 2.261240Cr1:2?C2?T?1:1? ? ? ?45?2014.5.20?? ? ? ? ? ?1:1? ?20CrMnTi?1810301617.931?1805.64.74514.058-DC3.2Z=10?2014.5.20??120H7?55m6?60m6?130H7?80H7?28J8/H7?72H9?80m6?140H73784.570223.74.2AA?110p6?110H75360?1301?2345678910111213141516171819202122232425262728?2930313233343536373839404142434445123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051464748495051211?1?1?HT3001?8?11 ?1?2?2?24?21?1?1?11?1?1?8?12?12?1?1?1?2?82? 20CrMnTi KTH-300 GB93-87 GB5782-86 GB9877.2-88 GB/897-84? GB/897-84 GB/T283-94? GB/897-84 GB5782-86 20CrMnTi GB5782-86 GB5782-86 20CrMnTiHT2001?1?1? GB5782-86 GB5782-86 GB5782-86?14?1?1 GB5782-8612? GB5782-86 GW-002 GW-003?222240Cr?1JB/ZQ4606-86YG1020-HQ-004YG1020-HQ-006YG1020-HQ-001YG1020-HQ-002HT200?M8?82214545?112GB/T297(7210E)YG1020-HQ-0054545?JB/ZQ4606-86GB6170-8608TiL?2YG1020-HQ-00224?126?142?240936?1.?A - A?2014.5.20? ? ?5 ?1 ?2010962914?1:2毕业设计说明书题 目:重载汽车后驱动桥结构设计专 业:学 号: 姓 名: 指导教师: 完成日期: 20 年 月 日 毕业论文(设计)任务书论文(设计)题目: 重载汽车后驱动桥结构设计 学号: 姓名: 黄瑞 专业: 指导教师: 系主任: 一、主要内容及基本要求 本设计的主要内容为: 1了解重型卡车后驱动桥工作原理; 2. 设计驱动桥主减速器的结构; 3. 设计驱动桥差速器的结构; 4对后驱动桥进行总装。 本设计的基本要求如下: 1掌握汽车驱动桥主减速器的工作原理和关键设计步骤; 2掌握关键部件的结构设计及装配; 3掌握驱动传动方案的设计方法。 二、重点研究的问题 本设计的重点研究问题有两个: 1驱动桥主减速器传动方案设计与实现。 2驱动桥主减速器结构装配。 三、进度安排序号各阶段完成的内容完成时间1查阅相关资料第1周2了解主减速器工作原理、拟定传动方案第23周3主减速器结构设计和装配第411周4翻译相关英文资料一份3000字左右第12周5撰写毕业论文(设计)说明书第13周678四、应收集的资料及主要参考文献 1 刘惟信汽车车桥设计M北京:清华大学出版社,2004 2 王望予汽车设计M第3版北京:机械工业出版社,2000 3 臧杰汽车构造M北京:机械工业出版社,2005. 4 余志生汽车理论M第3 版北京:机械工业出版社,2000 5 刘军利.单级桥:重型车桥的发展方向.商用汽车杂志,2005. 6 谭秀卿.重型汽车发展趋势简析.山东交通学院学报,2007. 7 张国锋.中国重型车桥谁主沉浮.技术新视野,2009. 8 刘昌仁.JQ8QH后驱动桥设计.客车技术与研究,1994. 9 驱动桥设计(上).长春汽车研究所,2012. 10 驱动桥设计(下).长春汽车研究所,2012. 毕业论文(设计)评阅表学号 姓名 专业 毕业论文(设计)题目: 重载汽车后驱动桥结构设计 评价项目评 价 内 容选题1.符合培养目标,体现学科、专业特点和教学计划的基本要求,达到综合训练的目的;2.难度、份量适当;3.与生产、科研、社会等实际相结合。能力1.有查阅文献、综合归纳资料的能力;2.有综合运用知识的能力;3.具备研究方案的设计能力、研究方法和手段的运用能力;4.具备一定的外文与计算机应用能力;5.有经济分析能力。论文(设计)质量1.立论正确,论述较充分,结构较严谨合理,设计、计算、分析处理比较科学;技术用语比较准确,符号统一,图表图纸完备、整洁、正确,引文比较规范;2.文字通顺,有观点提炼,综合概括能力较好;3.有实际应用价值,有创新之处。综合评 价选题符合培养目标,体现了本学科、专业特点及教学计划的基本要求,能够达到综合训练的目的,难度适当。作者具备较好查阅文献的能力,具有一定综合运用知识的能力,初步掌握了科研的一般方法,具备了较好的外文和计算机应用能力。设计方案基本正确,论述较为充分,结构合理,仿真结果正确,图表较为完备、清晰,文章比较规范,文字通顺,有一定的综合概括能力,研究课题有一定的应用价值。工作量较为饱满,论文的篇幅达到规定要求。评阅人: 2014年 月 日 毕业论文(设计)鉴定意见 学号: 姓名: 专业: 毕业论文(设计说明书) 45 页 图 表 5 张论文(设计)题目: 重载汽车后驱动桥结构设计 内容提要: 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构形式和主要涉设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主、从动锥齿轮、差速器圆锥行星齿轮、半轴齿轮、全浮式半轴和整体桥壳的强度进行校核以及对支承轴承进行了寿命校核。 本设计具有以下的优点:由于的是采用中央单级减速驱动桥,使得整个后桥的结构简单,制造工艺简单,从而大大的降低了制造成本。并且,弧齿锥齿轮的单级主减速器提高了后桥的传动效率,提高了传动的可行性。 在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。指导教师评语该同学能够基本完成毕业设计任务,解决方案尚可,能够基本达到预期目标;图、表基本合格,文理尚通顺;具有一定运用已学知识分析、解决问题的能力;工作态度尚可。同意其参加答辩指导教师: 2014年 月 日答辩简要情况及评语答辩陈述条理较清楚、重点较突出。回答问题准确程度较高。根据答辩情况,答辩小组同意其成绩评定为 。答辩小组组长: 2014年 月 日答辩委员会意见答辩委员会主任: 2014年 月 日目 录摘要ABSTRACT1 引言12 驱动桥结构方案分析13 主减速器设计43.1 主减速器的结构形式43.1.1 主减速器的齿轮类型43.1.2 主减速器的减速形式43.1.3 主减速器主,从动锥齿轮的支承形式43.2 主减速器的基本参数选择与设计计算53.2.1 主减速器计算载荷的确定53.2.2 主减速器基本参数的选择73.2.3 主减速器圆弧锥齿轮的几何尺寸计算93.2.4 主减速器圆弧锥齿轮的强度计算113.2.5 主减速器齿轮的材料及热处理173.2.6 主减速器轴承的计算174 差速器设计234.1 对称式圆锥行星齿轮差速器的差速原理234.2 对称式圆锥行星齿轮差速器的结构244.3 对称式圆锥行星齿轮差速器的设计254.3.1 差速器齿轮的基本参数的选择254.3.2 差速器齿轮的几何计算274.3.3 差速器齿轮的强度计算295 驱动半轴的设计305.1 全浮式半轴计算载荷的确定315.2 全浮式半轴的杆部直径的初选325.3 全浮式半轴的强度计算325.4 半轴花键的强度计算326 驱动桥壳的设计336.1 铸造整体式桥壳的结构346.2 桥壳的强度校核35结 论36参考文献37致 谢38附 录 英文文献翻译39重载汽车后驱动桥结构设计摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。 本设计具有以下的优点:由于的是采用中央单级减速驱动桥,使得整个后桥的结构简单,制造工艺简单,从而大大的降低了制造成本。并且,弧齿锥齿轮的单级主减速器提高了后桥的传动效率,提高了传动的可行性。关键字:驱动桥,主减速器,差速器,半轴,桥壳The Designing of Heavy Truck Rear Drive AxlesAbstractThe driving axle takes automobile one of four big units, its performance quality immediate influence complete bikes performance, but appears regarding the truck especially important. When uses the uprated engine to output the big torque satisfies the present truck fast, the heavy load high efficiency, the high benefit need, must match one highly effective, the reliable driving axle. The driving axle generally by the final drive, the differential, the wheel transmission device and the driving axle housing and so on is composed. Will therefore use the transmission efficiency high single stage deceleration driving axle to become in the future the heavy load automobiles development direction. This article referred to the traditional driving axles design method to carryon the truck driving axles design. This article first determines major components structure pattern and the main design variable; Then the reference similar driving axles structure, determines the overall project design; Finally to the host,the driven bevel gear, the differential device circular cone planet gear, the rear axle shaft gear, full-floating axle shaft and the banjo housings intensity carried on the examination as well as has carried on the life examination to the supporting bearing.This design has the following merit: What because uses the central single stage deceleration driving axle, causes the entire rear axle of car the structure to be simple, the fabrication technology is simple, thus big reduced the production cost. And, the arc cusp gears single stage main gear box raised the rear axle of car transmission efficiency, enhanced the transmission feasibility. key words: Driving axle,final drive,differential,axle shaft,axle housing561引言汽车的驱动桥位于传动系的末端,它的基本功用是增大由传动轴传来的转矩,将转矩分配给左右驱动车轮,并且使左右驱动车轮具有汽车行驶运动学所要求的差速功能;同时,驱动桥还要承受作用于路面和车架或者承载式车身之间的铅垂力、纵向力和横向力及力矩。主减速器是驱动桥的重要组成部分,车桥的结构形式和设计参数除了对汽车的可靠性与耐久性有重要的影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操作稳定性等有直接影响。随着汽车工业的发展和汽车技术的提高,驱动桥的设计、制造工艺都在日益完善。汽车驱动桥和其他汽车总成一样除了广泛的采用新技术以外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织的专业化目标前进。目前国内重型车桥生产企业也主要集中在中信车桥厂、东风襄樊车桥公司、济南桥箱厂、汉德车桥公司、重庆红岩桥厂和安凯车桥厂几家企业。这些企业几乎占到国内重卡车桥90%以上的市场。在本设计中还采用了AutoCAD绘图软件分别进行了工程图的绘制,运用AutoCAD绘制了一些重要的零件图,通过对AutoCAD的编辑工具与命令的运用,掌握了从AutoCAD基础图形的绘制基础零件的绘制各类零件图的创建与绘制的方法,并且理解了机械图绘制的工作流程,为今后更好的学习和掌握各种应用软件和技能打下坚实的基础。2驱动桥结构方案分析由于要求设计的是重型汽车后驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。驱动桥的结构形式有多种,基本形式有三种如下:1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式, 在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承, 有差速锁装置供选用。2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高, 桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用, 锥齿轮有2个规格。由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。圆锥行星齿轮式轮边减速桥。由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边减速器上 ,其“三化”程度较高。但这类桥因轮边减速比为固定值2,因此,中央主减速器的尺寸仍较大,一般用于公路、非公路军用车。圆柱行星齿轮式轮边减速桥。单排、齿圈固定式圆柱行星齿轮减速桥,一般减速比在3至4.2之间。由于轮边减速比大,因此,中央主减速器的速比一般均小于3,这样大锥齿轮就可取较小的直径,以保证重型汽车对离地问隙的要求。这类桥比单级减速器的质量大,价格也要贵些,而且轮穀内具有齿轮传动,长时间在公路上行驶会产生大量的热量而引起过热;因此,作为公路车用驱动桥,它不如中央单级减速桥。综上所述,由于设计的驱动桥的传动比为4.444,小于6。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势,主要是单级驱动桥还有以下几点优点:(l) 单级减速驱动桥是驱动桥中结构最简单的一种,制造工艺简单,成本较低, 是驱动桥的基本类型,在重型汽车上占有重要地位;(2) 重型汽车发动机向低速大转矩发展的趋势,使得驱动桥的传动比向小速比发展;(3) 随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低。因此,重型汽车不必像过去一样,采用复杂的结构提高通过性;(4) 与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性提高。单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看, 重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱动桥。所以此设计采用单级驱动桥再配以铸造整体式桥壳。图2-1Meritor单后驱动桥为中国重汽引进的美国ROCKWELL公司13吨级单级减速桥的外形图。图2-1 Meritor(美驰)单后驱动桥3 主减速器设计3.1 主减速器的结构形式主减速器的结构形式主要是根据其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。3.1.1 主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主、从动齿轮的轴线垂直交于一点。由于轮齿端面重叠的影响,至少有两个以上的轮齿同时啮合,因此可以承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐有齿的一端连续而平稳的地转向另一端,所以工作平稳,噪声和振动小。而弧齿锥齿轮还存在一些缺点,比如对啮合精度比较敏感,齿轮副的锥顶稍有不吻合就会使工作条件急剧变坏,并加剧齿轮的磨损和使噪声增大;但是当主传动比一定时,主动齿轮尺寸相同时,双曲面齿轮比相应的弧齿锥齿轮小,从而可以得到更大的离地间隙,有利于实现汽车的总体布置。另外,弧齿锥齿轮与双曲面锥齿轮相比,具有较高的传动效率,可达99%。3.1.2 主减速器的减速形式由于i=4.4446,一般采用单级主减速器,单级减速驱动桥产品的优势:单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的基本型,在重型汽车上占有重要地位;目前重型汽车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展;随着公路状况的改善,特别是高速公路的迅猛发展,许多重型汽车使用条件对汽车通过性的要求降低,因此,重型汽车产品不必像过去一样,采用复杂的结构提高其的通过性;与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。3.1.3 主减速器主,从动锥齿轮的支承形式作为一个13吨级的驱动桥,传动的转矩较大,所以主动锥齿轮采用骑马式支承。装于轮齿大端一侧轴颈上的轴承,多采用两个可以预紧以增加支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,其后部紧靠齿轮背面的那个齿轮称为主动锥齿轮后轴承;当采用骑马式支承时,装于齿轮小端一侧轴颈上的轴承一般称为导向轴承。导向轴承都采用圆柱滚子式,并且内外圈可以分离(有时不带内圈),以利于拆装。 3.2 主减速器的基本参数选择与设计计算3.2.1 主减速器计算载荷的确定1. 按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩ce (3-1)式中 发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比,在此取9.01,此数据此参考斯太尔1291.260/N65车型;发动机的输出的最大转矩,此数据参考斯太尔1291.260/N65车型在此取830;传动系上传动部分的传动效率,在此取0.9;该汽车的驱动桥数目在此取1;由于猛结合离合器而产生冲击载荷时的超载系数,对于一般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取=1.0,当性能系数0时可取=2.0; (3-2)汽车满载时的总质量在此取20000 ;所以 0.195 =4716 =-0.310 即=1.0由以上各参数可求=29910.22. 按驱动轮打滑转矩确定从动锥齿轮的计算转矩 (3-3)式中 汽车满载时一个驱动桥给水平地面的最大负荷,预设后桥所承载130000N的负荷; 轮胎对地面的附着系数,对于安装一般轮胎的公路用车,取=0.85;对于越野汽车取1.0;对于安装有专门的防滑宽轮胎的高级轿车,计算时可取1.25; 车轮的滚动半径,在此选用轮胎型号为12.00R20,滚动半径为 0.527m; ,分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9,由于没有轮边减速器取1.0 所以=64703.93. 按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定: (3-4)式中:汽车满载时的总重量,参考斯太尔1291.260/N65车型在此取2000000N;所牵引的挂车满载时总重量,N,但仅用于牵引车的计算;道路滚动阻力系数,对于载货汽车可取0.0150.020;在此取0.018汽车正常行驶时的平均爬坡能力系数,对于载货汽车可取0.050.09在此取0.07汽车的性能系数在此取0;,n见式(3-1),(3-3)下的说明。所以 =10305.8式(3-1)式(3-4)参考汽车车桥设计式(3-10)式(3-12)。3.2.2 主减速器基本参数的选择主减速器锥齿轮的主要参数有主、从动齿轮的齿数和,从动锥齿轮大端分度圆直径、端面模数、主从动锥齿轮齿面宽和、中点螺旋角、法向压力角等。1. 主、从动锥齿轮齿数和选择主、从动锥齿轮齿数时应考虑如下因素:1)为了磨合均匀,之间应避免有公约数。2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40。3)为了啮合平稳,噪声小和具有高的疲劳强度对于商用车一般不小于6。4)主传动比较大时,尽量取得小一些,以便得到满意的离地间隙。5)对于不同的主传动比,和应有适宜的搭配。根据以上要求参考汽车车桥设计中表3-12 表4-13取=9 =40 +=49402. 从动锥齿轮大端分度圆直径和端面模数对于单级主减速器,增大尺寸会影响驱动桥壳的离地间隙,减小又会影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。可根据经验公式初选,即 (3-5)直径系数,一般取13.016.0 从动锥齿轮的计算转矩,为Tce和Tcs中的较小者所以 =(13.016.0)=(403.5496.7)初选=450 则=/=450/40=11.25有参考机械设计手册中选取12 则=480根据=来校核=12选取的是否合适,其中=(0.30.4)此处,=(0.30.4)=(9.3112.4),因此满足校核。 3. 主,从动锥齿轮齿面宽和 锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面过窄及刀尖圆角过小,这样不但会减小了齿根圆角半径,加大了集中应力,还降低了刀具的使用寿命。此外,安装时有位置偏差或由于制造、热处理变形等原因使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间减小。但齿面过窄,轮齿表面的耐磨性和轮齿的强度会降低。 对于从动锥齿轮齿面宽,推荐不大于节锥的0.3倍,即,而且应满足,对于汽车主减速器圆弧齿轮推荐采用: =0.155480=74.4 在此取75一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大10%较为合适,在此取=80.4.中点螺旋角螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端螺旋角最小,弧齿锥齿轮副的中点螺旋角是相等的,选时应考虑它对齿面重合度,轮齿强度和轴向力大小的影响,越大,则也越大,同时啮合的齿越多,传动越平稳,噪声越低,而且轮齿的强度越高,应不小于1.25,在1.52.0时效果最好,但过大,会导致轴向力增大。汽车主减速器弧齿锥齿轮的平均螺旋角为3540,而商用车选用较小的值以防止轴向力过大,通常取35。5. 螺旋方向主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受的轴向力的方向,当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,从锥顶看为顺时针,驱动汽车前进。6. 法向压力角加大压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般对于“格里森”制主减速器螺旋锥齿轮来说,规定重型载货汽车可选用22.5的压力角。3.2.3 主减速器圆弧锥齿轮的几何尺寸计算表3-1 主减速器圆弧锥齿轮的几何尺寸计算用表序 号项 目计 算 公 式计 算 结 果1主动齿轮齿数92从动齿轮齿数403端面模数124齿面宽=80 =755工作齿高20.46全齿高=22.6567法向压力角=22.58轴交角=909节圆直径=108=480 10节锥角arctan=90-=12.682=77.31811节锥距A=A=245.9712周节t=3.1416 t=37.69913齿顶高=10.214齿根高=12.456 15径向间隙c=c=2.25616齿根角=2.899 17面锥角=15.581=80.21718根锥角=9.783=74.41919齿顶圆直径=127.902=484.47920节锥顶点止齿轮外缘距离=237.761=44.04921理论弧齿厚 =27.38mm=10.32mm22齿侧间隙B=0.3050.4060.4mm23螺旋角=353.2.4 主减速器圆弧锥齿轮的强度计算在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。1) 齿轮的损坏形式及寿命齿轮的损坏形式常见的有轮齿折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。它们的主要特点及影响因素分述如下: (1)轮齿折断主要分为疲劳折断及由于弯曲强度不足而引起的过载折断。折断多数从齿根开始,因为齿根处齿轮的弯曲应力最大。疲劳折断:在长时间较大的交变载荷作用下,齿轮根部经受交变的弯曲应力。如果最高应力点的应力超过材料的耐久极限,则首先在齿根处产生初始的裂纹。随着载荷循环次数的增加,裂纹不断扩大,最后导致轮齿部分地或整个地断掉。在开始出现裂纹处和突然断掉前存在裂纹处,在载荷作用下由于裂纹断面间的相互摩擦,形成了一个光亮的端面区域,这是疲劳折断的特征,其余断面由于是突然形成的故为粗糙的新断面。过载折断:由于设计不当或齿轮的材料及热处理不符合要求,或由于偶然性的峰值载荷的冲击,使载荷超过了齿轮弯曲强度所允许的范围,而引起轮齿的一次性突然折断。此外,由于装配的齿侧间隙调节不当、安装刚度不足、安装位置不对等原因,使轮齿表面接触区位置偏向一端,轮齿受到局部集中载荷时,往往会使一端(经常是大端)沿斜向产生齿端折断。各种形式的过载折断的断面均为粗糙的新断面。为了防止轮齿折断,应使其具有足够的弯曲强度,并选择适当的模数、压力角、齿高及切向修正量、良好的齿轮材料及保证热处理质量等。齿根圆角尽可能加大,根部及齿面要光洁。 (2)齿面的点蚀及剥落齿面的疲劳点蚀及剥落是齿轮的主要破坏形式之一,约占损坏报废齿轮的70%以上。它主要由于表面接触强度不足而引起的。点蚀:是轮齿表面多次高压接触而引起的表面疲劳的结果。由于接触区产生很大的表面接触应力,常常在节点附近,特别在小齿轮节圆以下的齿根区域内开始,形成极小的齿面裂纹进而发展成浅凹坑,形成这种凹坑或麻点的现象就称为点蚀。一般首先产生在几个齿上。在齿轮继续工作时,则扩大凹坑的尺寸及数目,甚至会逐渐使齿面成块剥落,引起噪音和较大的动载荷。在最后阶段轮齿迅速损坏或折断。减小齿面压力和提高润滑效果是提高抗点蚀的有效方法,为此可增大节圆直径及增大螺旋角,使齿面的曲率半径增大,减小其接触应力。在允许的范围内适当加大齿面宽也是一种办法。齿面剥落:发生在渗碳等表面淬硬的齿面上,形成沿齿面宽方向分布的较点蚀更深的凹坑。凹坑壁从齿表面陡直地陷下。造成齿面剥落的主要原因是表面层强度不够。例如渗碳齿轮表面层太薄、心部硬度不够等都会引起齿面剥落。当渗碳齿轮热处理不当使渗碳层中含碳浓度的梯度太陡时,则一部分渗碳层齿面形成的硬皮也将从齿轮心部剥落下来。(3)齿面胶合在高压和高速滑摩引起的局部高温的共同作用下,或润滑冷却不良、油膜破坏形成金属齿表面的直接摩擦时,因高温、高压而将金属粘结在一起后又撕下来所造成的表面损坏现象和擦伤现象称为胶合。它多出现在齿顶附近,在与节锥齿线的垂直方向产生撕裂或擦伤痕迹。轮齿的胶合强度是按齿面接触点的临界温度而定,减小胶合现象的方法是改善润滑条件等。(4)齿面磨损 这是轮齿齿面间相互滑动、研磨或划痕所造成的损坏现象。规定范围内的正常磨损是允许的。研磨磨损是由于齿轮传动中的剥落颗粒、装配中带入的杂物,如未清除的 型砂、氧化皮等以及油中不洁物所造成的不正常磨损,应予避免。汽车主减速器及差速器齿轮在新车跑合期及长期使用中按规定里程更换规定的润滑油并进行清洗是防止不正常磨损的有效方法。汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。在要求使用寿命为20万千米或以上时,其循环次数均以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过210.9Nmm.表3-2给出了汽车驱动桥齿轮的许用应力数值 表3-2 汽车驱动桥齿轮的许用应力 Nmm计算载荷 主减速器齿轮的许用弯曲应力主减速器齿轮的许用接触应力差速器齿轮的许用弯曲应力按式(2-1)、式(2-3)计算出的最大计算转矩Tec,Tcs中的较小者7002800980按式(2-4)计算出的平均计算转矩Tcf210.91750210.9 实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷(即平均计算转矩)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩Tec和最大附着转矩Tcs并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能作为疲劳损坏的依据。 2) 主减速器圆弧齿螺旋锥齿轮的强度计算(1) 单位齿长上的圆周力 在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即 Nmm (3-6)式中:P作用在齿轮上的圆周力,按发动机最大转矩Temax和最大附着力矩 两种载荷工况进行计算,N; 从动齿轮的齿面宽,在此取80mm. 按发动机最大转矩计算时: Nmm (3-7)式中:发动机输出的最大转矩,在此取830; 变速器的传动比;主动齿轮节圆直径,在此取108mm.按上式 Nmm 按最大附着力矩计算时: Nmm (3-8)式中:汽车满载时一个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车最大加速时的负荷增加量,在此取130000N; 轮胎与地面的附着系数,在此取0.85: 轮胎的滚动半径,在此取0.527m按上式=1619 Nmm在现代汽车的设计中,由于材质及加工工艺等制造质量的提高,单位齿长上的圆周力有时提高许用数据的20%25%。经验算以上两数据都在许用范围内。其中上述两种方法计算用的许用单位齿长上的圆周力p都为1865N/mm。(2)轮齿的弯曲强度计算 汽车主减速器锥齿轮的齿根弯曲应力为 N/ (3-9) 式中:该齿轮的计算转矩,Nm;超载系数;在此取1.0尺寸系数,反映材料的不均匀性,与齿轮尺寸和热处理有关,当时,在此0.829载荷分配系数,当两个齿轮均用骑马式支承型式时,1.001.1;其他方式支承时取1.101.25。支承刚度大时取最小值。质量系数,对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取1.0;计算齿轮的齿面宽,mm;计算齿轮的齿数;端面模数,mm;计算弯曲应力的综合系数(或几何系数),它综合考虑了齿形系数。载荷作用点的位置、载荷在齿间的分布、有效齿面宽、应力集中系数及惯性系数等对弯曲应力计算的影响。计算弯曲应力时本应采用轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。按图4-1选取小齿轮的0.225,大齿轮0.195.按上式173 N/ 210.3 N/ =199.7 N/3076.9 h=所以轴承符合使用要求。对于从动齿轮的轴承C,D的径向力计算公式见式(3-18)和式(3-19)已知F=25450N,=9662N,=20202N,a=410mm,b=160mm.c=250mm所以,轴承C的径向力:=10401.3N 轴承D的径向力:=23100.5N轴承C,D均采用7315E,其额定动载荷Cr为134097N(3)对于轴承C,轴向力A=9662N,径向力R=10401.3N,并且=0.93e,在此e值为1.5tana约为0.402,由机械设计中表18.7可查得X=0.4,Y=0.4cota=1.6所以Q=1.2(0.496621.610401.3)=24608.256N =28963 h所以轴承C满足使用要求。(4)对于轴承D,轴向力A=0N,径向力R=23100.5N,并且=.4187e 由机械设计中表13.7可查得X=0.4,Y=0.4cota=1.6 所以Q=1.2(1.623100.5)=44352.96N=4064.8 h 所以轴承D满足使用要求。4 差速器设计汽车在行驶过程中左,右车轮在同一时间内所滚过的路程往往不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上的滑移或滑转。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学要求。差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器有多种形式,在此设计普通对称式圆锥行星齿轮差速器。4.1 对称式圆锥行星齿轮差速器的差速原理图4-1 差速器差速原理 如图4-1所示,对称式锥齿轮差速器是一种行星齿轮机构。差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,设其角速度为;半轴齿轮1和2为从动件,其角速度为和。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星齿轮的中心点为C,A、B、C三点到差速器旋转轴线的距离均为。 当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(图4-1),其值为。于是=,即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。当行星齿轮4除公转外,还绕本身的轴5以角速度自转时(图),啮合点A的圆周速度为=+,啮合点B的圆周速度为=-。于是+=(+)+(-)即 + =2 (4-1) 若角速度以每分钟转数表示,则 (4-2)式(4-2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。有式(4-2)还可以得知:当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;当差速器壳的转速为零(例如中央制动器制动传动轴时),若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相同的转速反向转动。 4.2 对称式圆锥行星齿轮差速器的结构普通的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。如图4-2所示。图4-2 普通的对称式圆锥行星齿轮差速器1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,14-螺栓;6-半轴齿轮垫片;7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳4.3 对称式圆锥行星齿轮差速器的设计由于在差速器壳上装着主减速器从动齿轮,所以在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓尺寸也受到主减速器从动齿轮轴承支承座及主动齿轮导向轴承座的限制。4.3.1 差速器齿轮的基本参数的选择1.行星齿轮数目的选择 载货汽车采用4个行星齿轮。 2.行星齿轮球面半径的确定 圆锥行星齿轮差速器的结构尺寸,通常取决于行星齿轮的背面的球面半径,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,因此在一定程度上也表征了差速器的强度。 球面半径可按如下的经验公式确定: mm (4-3) 式中:行星齿轮球面半径系数,可取2.522.99,对于有4个行星齿轮的载货汽车取小值; T计算转矩,取Tce和Tcs的较小值,Nm.根据上式=2.6=80mm 所以预选其节锥距A=80mm3.行星齿轮与半轴齿轮的选择为了获得较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少。但一般不少于10。半轴齿轮的齿数采用1425,大多数汽车的半轴齿轮与行星齿轮的齿数比/在1.52.0的范围内。 差速器的各个行星齿轮与两个半轴齿轮是同时啮合的,因此,在确定这两种齿轮齿数时,应考虑它们之间的装配关系,在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数,之和必须能被行星齿轮的数目所整除,以便行星齿轮能均匀地分布于半轴齿轮的轴线周围,否则,差速器将无法安装,即应满足的安装条件为: (4-4)式中:,左右半轴齿轮的齿数,对于对称式圆锥齿轮差速器来说,= 行星齿轮数目; 任意整数。在此=10,=18 满足以上要求。4.差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定 首先初步求出行星齿轮与半轴齿轮的节锥角, =29.05 =90-=60.95 再按下式初步求出圆锥齿轮的大端端面模数m m=7.77 由于强度的要求在此取m=10mm得=100mm =1018=180mm 5.压力角目前,汽车差速器的齿轮大都采用22.5的压力角,齿高系数为0.8。最小齿数可减少到10,在此选22.5的压力角。6. 行星齿轮安装孔的直径及其深度L行星齿轮的安装孔的直径与行星齿轮轴的名义尺寸相同,而行星齿轮的安装孔的深度就是行星齿轮在其轴上的支承长度,通常取: (4-5)式中:差速器传递的转矩,Nm;在此取29910Nm 行星齿轮的数目;在此为4 行星齿轮支承面中点至锥顶的距离,mm, 0.5d, d为半轴齿轮齿面宽中点处的直径,而d0.8; 支承面的许用挤压应力,在此取69 MPa根据上式 =144mm =0.5144=72mm 36mm 40mm4.3.2 差速器齿轮的几何计算表4-1汽车差速器直齿锥齿轮的几何尺寸计算用表序号项目计算公式计算结果1行星齿轮齿数10,应尽量取最小值=102半轴齿轮齿数=1425,且需满足式(4-4)=183模数=10mm4齿面宽b=(0.250.30)A;b10m30mm 5工作齿高=16mm6全齿高17.9317压力角22.58轴交角=909节圆直径; 10节锥角,=29.05,11节锥距=102.97mm12周节=3.1416=31.42mm13齿顶高;=12.3mm=5.6mm14齿根高=1.788-;=1.788-=7.32mm;=12.44mm15径向间隙=-=0.188+0.051=1.931mm16齿根角=;=1.067; =6.86817面锥角;=35.94=65.0218根锥角;=24.98=54.0619外圆直径;mmmm20节圆顶点至齿轮外缘距离mmmm21理论弧齿厚 =17.38 mm=14.05 mm22齿侧间隙=0.2450.330 mm=0.250mm23弦齿厚=17.13mm=13.88mm24弦齿高=11.22mm=5.58mm4.3.3 差速器齿轮的强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合状态,只有当汽车转弯或左右轮行驶不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。因此对于差速器齿轮主要应进行弯曲强度校核。轮齿弯曲强度为 = MPa (4-6) 式中:差速器一个行星齿轮传给一个半轴齿轮的转矩,其计算式 在此为1547.25 Nm; 差速器的行星齿轮数; 半轴齿轮齿数; 、见式(3-9)下的说明; 计算汽车差速器齿轮弯曲应力用的综合系数,由图4-1可查得=0.225图5-2 弯曲计算用综合系数根据上式=201.7 MPa210.9 MPa所以,差速器齿轮满足弯曲强度要求。5 驱动半轴的设计驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器的半轴齿轮传给驱动车轮。在一般的非断开式驱动桥上,驱动车轮的传动装置就是半轴,半轴将差速器的半轴齿轮与车轮的轮毂联接起来,半轴的形式主要取决半轴的支承形式:普通非断开式驱动桥的半轴,根据其外端支承的形式或受力状况不同可分为半浮式,3/4浮式和全浮式,在此由于是载重汽车,采用全浮式结构。设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。 计算时首先应合理地确定作用在半轴上的载荷,应考虑到以下三种可能的载荷工况: 纵向力(驱动力或制动力)最大时,其最大值为,附着系数在计算时取0.8,没有侧向力作用; 侧向力最大时,其最大值为(发生于汽车侧滑时),侧滑时轮胎与地面的侧向附着系数在计算时取1.0,没有纵向力作用; 垂向力最大时(发生在汽车以可能的高速通过不平路面时),其值为,其中为车轮对地面的垂直载荷,为动载荷系数,这时不考虑纵向力和侧向力的作用。 由于车轮承受的纵向力,侧向力值的大小受车轮与地面最大附着力的限制,即有 故纵向力最大时不会有侧向力作用,而侧向力最大时也不会有纵向力作用。5.1 全浮式半轴计算载荷的确定 全浮式半轴只承受转矩,其计算转矩可有求得,其中,的计算,可根据以下方法计算,并取两者中的较小者。 若按最大附着力计算,即 (5-1)式中:轮胎与地面的附着系数取0.8; 汽车加速或减速时的质量转移系数,可取1.21.4在此取1.3。根据上式=676000 N 若按发动机最大转矩计算,即 (5-2)式中:差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取0.6; 发动机最大转矩,Nm; 汽车传动效率,计算时可取1或取0.9; 传动系最低挡传动比; 轮胎的滚动半径,m。上参数见式(3-1)下的说明。根据上式=34053.4 N在此34053.4N =17946.1Nm5.2 全浮式半轴的杆部直径的初选全浮式半轴杆部直径的初选可按下式进行 (5-3)根据上式=(53.6757.07)mm根据强度要求在此取57.5mm。5.3 全浮式半轴的强度计算 首先是验算其扭转应力: MPa (5-4)式中:半轴的计算转矩,Nm在此取17946.1Nm;半轴杆部的直径,mm。根据上式481 MPa =(490588) MPa所以满足强度要求。5.4 半轴花键的强度计算在计算半轴在承受最大转矩时还应该校核其花键的剪切应力和挤压应力。半轴花键的剪切应力为 MPa (5-5)半轴花键的挤压应力为 MPa (5-6)式中:半轴承受的最大转矩,Nm ,在此取17946.1Nm; 半轴花键的外径,mm,在此取62.5mm; 相配花键孔内径,mm,在此取57.74mm; 花键齿数;在此取24 花键工作长度,mm,在此取120mm; 花键齿宽,mm,在此取3.925mm; 载荷分布的不均匀系数,计算时取0.75。根据上式可计算得=70.4 MPa =59.1 MPa 根据要求当传递的转矩最大时,半轴花键的切应力不应超过71.05 MPa,挤压应力不应超过196 MPa,以上计算均满足要求。6 驱动桥壳的设计驱动桥壳的主要功用是支承汽车质量,并承受有车轮传来的路面反力和反力矩,并经悬架传给车身,它同时又是主减速器,差速器和半轴的装配体。驱动桥壳应满足如下设计要求: 应具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力; 在保证强度和刚度的情况下,尽量减小质量以提高行驶的平顺性; 保证足够的离地间隙; 结构工艺性好,成本低; 保护装于其中的传动系统部件和防止泥水浸入; 拆装,调整,维修方便。考虑的设计的是载货汽车,驱动桥壳的结构形式采用铸造整体式桥壳。6.1 铸造整体式桥壳的结构 通常可采用球墨铸铁、可锻铸铁或铸钢铸造。在球铁中加入1.7%的镍,解决了球铁低温(-41C)冲击值急剧降低的问题,得到了与常温相同的冲击值。为了进一步提高其强度和刚度,铸造整体式桥壳的两端压入较长的无缝钢管作为半轴套筒,并用销钉固定。如图5-1所示,每边半轴套管与桥壳的压配表面共四处,由里向外逐渐加大配合面的直径,以得到较好的压配效果。钢板弹簧座与桥壳铸成一体,故在钢板弹簧座附近桥壳的截面可根据强度要求铸成适当的形状,通常多为矩形。安装制动底板的凸缘与桥壳住在一起。桥壳中部前端的平面及孔用于安装主减速器及差速器总成,后端平面及孔可装上后盖,打开后盖可作检视孔用。另外,由于汽车的轮毂轴承是装在半轴套管上,其中轮毂内轴承与桥壳铸件的外端面相靠,而外轴承则与拧在半轴套管外端的螺母相抵,故半轴套管有被拉出的倾向,所以必须将桥壳与半轴套管用销钉固定在一起。图6-1 铸造整体式驱动桥结构铸造整体式桥壳的主要优点在于可制成复杂而理想的形状,壁厚能够变化,可得到理想的应力分布,其强度及刚度均较好,工作可靠,故要求桥壳承载负荷较大的中、重型汽车,适于采用这种结构。尤其是重型汽车,其驱动桥壳承载很重,在此采用球铁整体式桥壳。除了优点之外,铸造整体式桥壳还有一些不足之处,主要缺点是质量大、加工面多,制造工艺复杂,且需要相当规模的铸造设备,在铸造时质量不宜控制,也容易出现废品,故仅用于载荷大的重型汽车。6.2 桥壳的强度校核桥壳选定之后主要是选择桥壳截面的尺寸,桥壳的危险截面通常在靠近钢板弹簧座处。这个截面的安全系数K,根据我国的道路条件对载货汽车推荐不低于6,对于越野汽车推荐不低于8。安全系数K按下式计算 式中:桥壳材料的强度极限,桥壳材料选用40Cr, 为1000MPa; 桥壳危险截面的弯曲应力。桥壳的按照下式计算 式中:作用在桥壳危险截面处的弯矩; 满载时驱动桥负荷为130000N; l汽车车轮中心线到钢板弹簧中心线的距离为850mm; 桥壳的抗弯截面系数, =3840.7mm3。将上述参数带人得K=6.3,所以设计满足基本要求。结 论本课题设计的13吨级重卡驱动桥,采用单级减速驱动桥,由于结构简单、主减速器造价低廉、工作可靠,可以被广泛用在各种重型载货汽车。设计介绍了后桥驱动的结构形式和工作原理,计算了差速器、主减速器以及半轴的结构尺寸,进行了强度校核,并绘制了有关零件图和装配图。本驱动桥设计结构合理,符合实际应用,具有很好的动力性和经济性,驱动桥总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。但此设计过程仍有许多不足,在设计结构尺寸时,有些设计参数是按照以往经验值得出,这样就带来了一定的误差。另外,在一些小的方面,由于时间问题,做得还不够仔细,恳请各位老师同学给予批评指正。参考文献1 刘惟信汽车车桥设计M北京:清华大学出版社,20042 王望予汽车设计M第3版北京:机械工业出版社,20003 臧杰汽车构造M北京:机械工业出版社,2005.4 余志生汽车理论M第3 版北京:机械工业出版社,20005 刘军利.单级桥:重型车桥的发展方向.商用汽车杂志,2005.6 谭秀卿.重型汽车发展趋势简析.山东交通学院学报,2007.7 张国锋.中国重型车桥谁主沉浮.技术新视野,2009.8 刘昌仁.JQ8QH后驱动桥设计.客车技术与研究,1994.9 驱动桥设计(上).长春汽车研究所,2012.10 驱动桥设计(下).长春汽车研究所,2012.11 赵 娜、李 静.新型独立悬架断开式重型驱动桥.农业装备与车辆工程,2009.12 李红渊、李萍锋.载重汽车驱动桥主减速器设计.农业装备与车辆工程,2009.13 陈 方、杨 波.双从动齿轮驱动桥.底盘制造,2010.14 高 杰、王俊奇.驱动桥单级主减速器总成装配.MC研发与应用,2004.15 朱永强、高 利、张平霞、王树凤、柴 山.驱动桥运动仿真.拖拉机与农用运输车,2008.16 杜正越,徐 治,吕永林,赵智巍.4WD概念车驱动桥的设计与分析.湖北汽车工业学院学报,2011.17 刘永辉、朱晓波.重型汽车驱动桥的基本结构及发展方向.科技前沿,2011.18 张冬青、卜庆忠.中国重型汽车和大型客车市场状况与发展预测.中国轮胎市场研讨会论文,1999.19 Dirk Spindler Georg von Petery INA-Schaeffler KG. Angular Contact Ball Bearings for a Rear Axle Differential.SAE ,2003.20 王聪兴,冯茂林.现代设计方法在驱动桥设计中的应用.公路与汽运,2004.21 A.E.Schaller.TotalAutomotiveTechnology.DelmarLearning,adivisionOfThomsonLearning,Inc.2004.致 谢本文是在刘老师的悉心指导下完成的,我很自豪有这样一位老师,他值得我尊敬。同时,我要感谢机械工程学院所有的老师,是他们传授给我方方面面的知识,拓宽了我的知识面,培养了我的功底,对论文的完成不无裨益。谨向我的父母和家人表示诚挚的谢意。让我依依不舍的还有各位同学。在我需要帮助的时候,你们伸出温暖的双手,鼎立襄助。最后感谢我的母校四年来对我的大力栽培。衷心祝愿母校的明天更加美好!附录 英文文献翻译Drive axle/differentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.Powerflow The drive axle must transmit power through a 90 angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Figure 11 Component parts of a typical driven axle assembly. Differential operationThe differential is an arrangement of gears with two functions: to permit the rear wheels to turn at different speeds when cornering and to divide the power flow between both rear wheels.The accompanying illustration has been provided to help understand how this occurs. The drive pinion, which is turned by the driveshaft, turns the ring gear (1).The ring gear, which is attached to the differential case, turns the case (2).The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case (3).The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft (4).Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit (5).The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns (6).When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears (7).When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds (8).As the inner wheel slows down, the side gear splined to the inner wheel axle shaft also slows. The pinion gears act as balancing levers by maintaining equal tooth loads to both gears, while allowing unequal speeds of rotation at the axle shafts. If the vehicle speed remains constant, and the inner wheel slows down to 90 percent of vehicle speed, the outer wheel will speed up to 110 percent. However, because this system is known as an open differential, if one wheel should become stuck (as in mud or snow), all of the engine power can be transferred to only one wheel.Figure 12 Overview of differential gear operating principles. Limited-slip and locking differential operation Limited-slip and locking differentials provide the driving force to the wheel with the best traction before the other wheel begins to spin. This is accomplished through clutch plates, cones or locking pawls.The clutch plates or cones are located between the side gears and the inner walls of the differential case. When they are squeezed together through spring tension and outward force from the side gears, three reactions occur. Resistance on the side gears causes more torque to be exerted on the clutch packs or clutch cones. Rapid one wheel spin cannot occur, because the side gear is forced to turn at the same speed as the case. So most importantly, with the side gear and the differential case turning at the same speed, the other wheel is forced to rotate in the same direction and at the same speed as the differential case. Thus, driving force is applied to the wheel with the better traction.Locking differentials work nearly the same as the clutch and cone type of limited slip, except that when tire speed differential occurs, the unit will physically lock both axles together and spin them as if they were a solid shaft.Figure 13 Limited-slip differentials transmit power through the clutches or cones to drive the wheel having the best traction.Identifying a limited-slip drive axleMetal tags are normally attached to the axle assembly at the filler plug or to a bolt on the cover. During the life of the vehicle, these tags can become lost and other means must be used to identify the drive axle.To determine whether a vehicle has a limited-slip or a conventional drive axle by tire movement, raise the rear wheels off the ground. Place the transmission in PARK (automatic) or LOW (manual), and attempt to turn a drive wheel by hand. If the drive axle is a limited-slip type, it will be very difficult (or impossible) to turn the wheel. If the drive axle is the conventional (open) type, the wheel will turn easily, and the opposing wheel will rotate in the reverse direction.Place the transmission in neutral and again rotate a rear wheel. If the axle is a limited-slip type, the opposite wheel will rotate in the same direction. If the axle is a conventional type, the opposite wheel will rotate in the opposite direction, if it rotates at all.Gear ratio The drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:重载汽车后驱动桥结构设计【5张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-21538009.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!