会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

银行管理论文-KMV模型的修正及应用研究.doc银行管理论文-KMV模型的修正及应用研究.doc -- 10 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

银行管理论文KMV模型的修正及应用研究摘要根据我国资本市场的特点,选取KMV模型的相关参数,使用上市公司在某国有商业银行贷款不良率替代其违约率,拟合出贷款不良率与违约距离的函数关系。实证结果表明,在KMV模型使用不良率替代违约率计量上市公司的信用风险的方法是可行的。关键词贷款不良率违约率KMV模型信用风险AbstractOnthebaseoftheparticularityofChina'sstockmarket,selectingtheparametersoftheKMVmodelandusingthedatafromonecommercialbank,weadoptnonperformingloansNPLsratiotosubstituteexpectdefaultfrequencyEDFtofitthefunctionbetweenNPLsratioanddistancetodefaultDD.TheresultsshowthatthemethodthatusingNPLsratiotosubstituteEDFtoestimatethecreditrisksoflistedcompaniesisfeasible.KeywordsnonperformingloansratioexpectdefaultfrequencyKMVmodelcreditrisks一、引言商业银行的风险管理一直是国际国内金融界关注的焦点,而风险计量技术则是风险管理的核心。基于资本市场的发展和信息技术的提高,国际金融市场上开发了如Creditmetrics模型、KMV模型、CreditRisk模型和CreditPortfolioView模型。其中的KMV模型基于BlackScholes和Merton期权定价理论,主要采用股票市场数据,因此数据和结果更新速度快,具有前瞻性,现已成为当今世界著名的信用风险计量工具之一。KMV模型自1993年推出以来,国外学术界对KMV模型的研究经历了两个阶段第一阶段是将KMV模型的预测结果与实际的违约数据相比较,大多数研究结果表明,KMV模型能够反映信用风险的高低,并对信用风险具有很高的敏感性。第二阶段,国外学术界对模型的验证寻找到新的角度,并开发出多种验证模型有效性的方法和技术。我国学者主要对模型在我国适应性和参数调整方面进行了许多探讨,取得了一定的成果。张林、张佳林2000、王琼、陈金贤2002先后对KMV模型与其他模型进行理论上比较,认为更适合于评价上市公司的信用风险。薛锋,鲁炜,赵恒街,刘冀云2003利用中国股市的数据,得出了应中市场的σv和σE的关系函数,并以一只股票为样本进行了实证分析。乔卓等2003介绍了KMV模型的基本内容,以及国外的应用经验,但是并没有进行实证研究。易丹辉,吴建民2004年对深市和沪市随机抽取30家公司分行业计算违约距离和违约率并作比较,认为借助违约距离衡量上市公司的信用风险是可行的。由于缺少大量违约公司样本的历史数据库,因此,我国目前无法通过比较违约距离和破产频率的历史,拟合出代表公司违约距离的预期违约率函数。本文尝试使用上市公司在某国有商业银行贷款不良率替代其违约率,并根据我国资本市场的特点,选取KMV模型的相关参数,同时采用某国有商业银行2001年12月31日的235家贷款客户的不良率来替代上市公司的违约率进行实证分析,建立违约距离与不良率的函数关系。二、样本选择与参数的确定一KMV模型的计算步骤1.估计公司资产的价值及其波动性根据BlackScholes的期权定价公式,我们可以得到以下表达式E期权的市场价值D负债的账面价值V企业资产的市场价值τ时间范围r无风险利率3.估计违约率ExpectedDefaultFrequency,EDF即确定违约距离与违约率的映射关系根据模型的假设,违约距离即是评价企业违约风险的一个度量指标,用其作为不同企业之间的比较。二参数的确定1.违约率EDF的选取预期违约率有两种类型一种是经验的EDF一种是理论的EDF。KMV公司使用了前者。它是在年初公司资产价值距违约点的距离都是其标准差的某一个常数倍到期时有多少公司违约,即EDF违约数目时间T/N。N年初资产价值距违约点为其标准差的某一个常数倍的一组公司的数目。根据中国人民银行1998年4月制定贷款风险分类指导原则试行推行的贷款质量五级分类管理办法。贷款风险分类指导原则试行把贷款分为正常、关注、次级、可疑和损失五类后三类合称为不良贷款。五级分类法下的不良贷款率次级可疑损失/贷款总额。五级贷款分类方法的实质是通过深入、客观地分析借款企业的生产、经营活动,看它的流动性、资产负债表、担保单位的实力,来判断贷款本息收回的可能性,然后确定贷款质量等级。因此,贷款不良率与违约率在计量对象和计量内容本质上是一致的。在我国,由于缺少样本历史数据,故本文使用资产不良率来代替违约率。2.违约点DP的选取在确定违约实施点时,应该考虑到公司债务的结构,即要从债务求偿权等级和到期期限两个角度来分析。本文采用KMV公司推荐违约点计算方法DP流动负债0.5长期负债。3.无风险利率r以银行一年期存款利率1.98作为替代,为了简化计算,本文将r定义为2。4.股本价值的计算我国上市公司股权结构中含有流通股和非流通股,因此,对于非流通股价值的计算方法对计算结果会有很大影响。董颖颖,薛锋,关伟2004对于非流通股价值的计算选取了2000年和2001年协议转让的38只国有股的相关数据进行回归分析的研究结果是P1.3260.53XP非流通股每股价值,X每股净资产,参数t检验以及模型可靠性F检验均在0.01显著水平上,且相应的DW值介于1和2之间,从而可以认为序列不相关,因此参数本身以及方程总体都是合适的。本文对非流通股价值的计算将运用这一结果。①5.时间范围τ为一年。6.以流通股股价波动率代替股本价值波动率。三样本选取本文选取某国有商业银行在沪、深股市235家的贷款客户为样本,由于贷款不良率数据来源的限制,故本文计算样本以2000年12月31日为基准点,期限为一年的违约距离,并与2001年末的样本贷款不良率建立函数关系。三、实证结果及分析一实证结果1.数据处理结果本文运用Excel软件对原始数据进行处理,并运用Matlab软件对模型中的二元非线性方程组求解,处理结果如下处理过程与Matlab求解程序略,依股票代码列举前30个样本相关数据。2.回归分析本文运用Eviews软件对资产不良率自变量Y和违约距离因变量DD进行回归分析,所得结果如下1回归的相关参数为Rsquared0.058349Fstatistic14.62371ProbFstatistic0.0001682回归方程可表示为Y66.9820.19DD二实证结果分析1.使用不良率替代其违约率的方法可行。回归方程F检验、C值和DD值的t检验在99置信水平显著。R平方的检验不显著的主要原因是因变量Y资产不良率取值的离散程度不高Y0.00样本为153个,占样本总数的64,Y100.00的样本为29个,占样本总数的12,Y的标准差达到35.35,因此,参数选取合适且回归方程总体显著。2.由于违约距离DDfE,σE,r,τ,且不良率YgDD,在本文中影响不良率的因素有E,σE,r和τ等,E和σE取值由上市公司的经营状况决定。因此,影响本文的不良率因素是上市公司的经营成果和财务状况。3.通过样本回归方程,我们可以得知,违约距离与不良率呈负相关关系,违约距离每下降一个单位,贷款不良率上升20.19。资本市场瞬息万变,上市公司的经营成果和财务状况会即时反映在股价上,我们可以随时根据更新的违约距离来计量出上市公司的信用风险。四、结论1.本文尝试使用上市公司在某国有商业银行贷款不良率替代其违约率,并根据我国资本市场的特点,选取KMV模型的相关参数,建立贷款不良率与违约率的函数关系。用贷款不良率替代违约率后,KMV模型中数据获取更容易,方法简便,比较适合在我国进行推广和应用。实证表明,贷款不良率与违约距离的函数关系显著。因此,在KMV模型中使用上市公司贷款不良率替代其违约率计量信用风险是可行的。2.由于KMV模型基于资本市场的有效性建立了违约率与违约率的映射关系,具有前瞻性和客观性。随着我国股票市场规模的不断扩大,机构投资者不断增多,我国市场的有效性将得到进一步增强。因此,经改进后的KMV模型可以为债权人、投资者和监管者提供及时、可靠的信用风险计量工具,是我国的信用风险由静态管理转化为动态管理的一种可行的选择。3.在KMV模型中,股本价值是通过上市公司每日的股票市场价格来计算的,然而我国金融机构的大部分贷款对象是非上市公司。因此,如何计算非上市公司的股本价值进而计算其违约距离和贷款不良率需进一步做深入地研究。参考文献1John.B.Caouettee,EdwardIAltman,PaulNarayanan.ManagingCreditRiskTheNextGreatFinancialChallengeM.NewYorkJohnWileySonsInc,1998139153.2BlackF,ScholesM.ThepricingofoptionsandcorporateliabilitiesJ.JournalofPoliticalEconomy,1973,8637659.3MertonR.OnthepricingofcorporatedebttheriskstructureofinterestratesJ.JournalofFinance,1974,28449470.3DidierCossin,HuguesPirotte.AdvancedCreditRiskAnalysisM.NewYorkJohnWileySons,1td.2001933.4张玲,张佳林.信用风险评估方法发展趋势J.预测,2000,47275.5王琼,陈金贤.信用风险定价方法与模型研究J.现代财经天津财经学院学报,2002,2241416.6薛锋,关伟,乔卓.上市公司信用风险度量的一种新方法KMVJ.西北工业大学学报社会科学版,2003,2333841.7张玲,杨贞柿,陈收.KMV模型在上市公司信用风险中应用研究J.系统工程,2004,22118488.8董颖颖,薛锋,关伟.KMV模型在我国证券市场的适用性分析及其改进J.生产力研究,2004,8116117.9易丹辉,吴建民.上市公司信用风险计量研究KMV模型及其应用J.统计与信息论坛,2004,196811.10都红雯,杨威.我国对KMV模型实证研究中存在的若干问题及对策思考J.国际金融研究,2004,112227.AModificationabouttheKMVModelandItsApplication
编号:201312162038258627    大小:13.38KB    格式:DOC    上传时间:2013-12-16
  【编辑】
10
关 键 词:
行业资料 金融保险 精品文档 银行管理
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:37次
docin上传于2013-12-16

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

行业资料   金融保险   精品文档   银行管理  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5