设计说明书.doc

桥梁滑动式挂篮设计(全套含44张CAD图纸)

收藏

资源目录
跳过导航链接。
桥梁滑动式挂篮设计(全套含44张CAD图纸).zip
设计说明书.doc---(点击预览)
摘要目录.doc---(点击预览)
开题报告.doc---(点击预览)
中期报告.doc---(点击预览)
1 桥梁滑动式挂篮设计.doc---(点击预览)
外文翻译
06前上横梁.dwg
2000双头螺柱.dwg
上下横梁.dwg
上下横梁连接块.dwg
下工作台.dwg
下梁工作板架.dwg
下楔块.dwg
下楔块1.dwg
中间工作台.dwg
侧板支撑板.dwg
侧模.dwg
侧模内板.dwg
内上模拉板.dwg
内下模版.dwg
内下模版固定架.dwg
内楔块.dwg
内模板.dwg
内模板固定钢筋架.dwg
前上梁工作台板.dwg
前支座.dwg
吊杆.dwg
后支座1.dwg
后支座2.dwg
后支座3.dwg
后铆定杆.dwg
后锚定压板.dwg
后锚定垫片.dwg
大销子.dwg
总装配体-A1.dwg
杆s1.dwg
杆s2.dwg
杆s3.dwg
杆s4.dwg
杆s5.dwg
梯子.dwg
自己制作总动画.avi
菱形架焊接板.dwg
行走动画.avi
轨道.dwg
轨道上垫板.dwg
轨道下垫板.dwg
轨道垫板连接双头螺柱.dwg
连接点a.dwg
连接点b.dwg
连接点c.dwg
连接点d.dwg
压缩包内文档预览:(预览前20页/共64页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:7597116    类型:共享资源    大小:34.79MB    格式:ZIP    上传时间:2018-01-21 上传人:机****料 IP属地:河南
50
积分
关 键 词:
桥梁 滑动 挂篮 设计 全套 44 cad 图纸
资源描述:


内容简介:
桥梁使用系统可靠性评估摘要当前桥梁可靠性评估过程描述在AASHTO手册第一版中有说明、评估的内容有,容许应力、载荷系数、负载和阻力系数等。这几个数据可能导致不同的桥面承载能力和桥梁的安全性,确保这几个桥梁参数合格与否是保证桥梁安全性和经济性的必要途径。本文主要总结研究桥梁建设的改进过程,以提高桥梁结构的可靠性。论文提供了背景,研究计划和总结协调程序的负载测试和分析支持可导致的不可靠因素并提出改进建议。DOI101061/土木BE194355920000171。2011美国土木工程师学会。CE数据库主题词混凝土桥梁钢筋混凝土预应力混凝土负载因素可靠性钢材评估。作者关键词桥梁混凝土钢筋混凝土预应力状态评估负载可靠性钢结构工程。介绍桥梁评估的AASHTO手册MBE,第一版AASHTO2008允许桥评估决定通过,传统的容许应力等级ASR或负载因素评估LFR方法或最近的负载和阻力系数评估LRFR方法,它是符合AASHTOLRFD桥梁设计规范2007。大桥是否可靠经济,从一个专业工程的观点取决于可靠性评估是否合格。为了解决桥梁不可靠问题乔治亚理工学院的技术已经进行了多年,研究项目旨在使桥梁在建设当中更加可靠经济。高级结构工程师,辛普森,GUMPERTZ,HEGER,INC411SEYON圣,沃尔瑟姆,土木与环境工程学院,乔治亚理工学院。2亚特兰大,佐治亚州博士,土木与环境工程学院,乔治亚理工学院,3033203553亚特立顿,佐治亚州硕士,土木与环境工程学院,乔治亚理工学院,303320355本文属于桥梁工程16卷,6号,2011年11月1日。土木,ISSN10840702/2011/6863871/2500。框架法来确定实际桥梁评估方法适合那些以AASHTOLRFD桥梁设计规范AASHTO2007而设计的桥梁。并且此方法已经在美国中部和东部以及其它非地震地区得到了验证。近期在桥梁评估中实施了LRFD及其LRFR两种评估方法,两者是验证结构可靠性的方法。现有有一种VANCES,改进的技术评估桥梁方法此种方法会减少不必要的其它因素影响可能性的测量结果。为此,材料优势就可能大大影响标准化或名义假设值在设计和计算评估行为中对桥梁强度增益的影响,一个良好的桥段应在一多年的维护期内没有什么大的修复和裂痕以及其它影响桥梁使用的问题出现,在设计阶段就应该考虑这些问题的造成原因并及时处理。调查桥梁系统的可靠性不是仅仅依靠基于桥梁组件及其本身的评估方法。重要的是适当的考虑这些因素产生的原因并及时避免。桥梁可靠性额定载荷桥的设计问题在AASHTOLRFD规格2007,建立了现代的结构可靠性原理分析,要求了现有桥梁的评估过程必须符合规定原则。现有的桥梁之所以存在不安全性是应为,产生差异负载、材料强度特性变换、尺寸改变、自然和人为的危险。以及在设计当中缺乏足够的知识,和人类在建筑设当中犯得一些错误。一个经济可靠的桥梁必须建立在理性的和强大的理论基础以及能够处理一些实践中不确定的影响因素。极限状态设计和评估桥梁可以定义的一般形式为G(X)0在负载和阻力随机X(X1,X2,X3,XN),桥梁的基础信息值包括变形、开裂,功能障碍。或者另外一些不合理的因素。一个桥梁不令人满意的性能定义概率被估算为联合密度函数X故障域可靠性分析值近视于在()标准正态分布函数可靠性指标。对表现良好的极限状态,EQ通常是一个常值。可以通过有限元分析对EP进一步的分析比对。在桥梁设计规范的AASHTOLRFD2007中建立了在FO可靠性分析,应用于单个梁评估计算,及其计算概率建模的电阻和负载,例如目标桥梁的可靠性指标35,那么就说明此桥梁可以使用75年之久。概率估算公式为其中D静负荷不包括重量的磨损面DA重量的磨损面沥青L与I代表活载,RN名义电阻。这个方程是大多数设计师再设计计算式后应用的,同时此方程也是现场检验数据,负荷测试,材料测试,等信息的可靠公式。另一种概率估算公式为H代表性能指数,进行检查,并支持现场试验,无论任何目标概率PT,应该依赖于经济学中的合理性在AASHTOLRFR方法2007。H是一个概念上的背离方程式,LRFR介绍一组活负载因素为定值的额定载荷,这取决于现场交通所描述的平均每日车流量,和车载量。在AASHTOLRFRMBE扩展了极限状态设计实现了一个统一的目标水平对公路大桥安全的评估系统。然而,不确定性模型的负载和阻力嵌入式在LRFR评级格式代表典型值在高山地带和平原地带以及河流地带不懂的地带,不通的环境因素影响,不同的车流量,以及在建桥过程中不同的吨重不同的跨径,不同的材料,相同材料的使用情况的不同都会使得评估的参数值发生改变从而使得被评估大桥的可靠性发生变化。桥梁评估方法之间存在着一定的区别与联系,根据各种方法得起典型特点,桥梁评估方法大致可以分为基于外观调查的方法,基于规范设计的方法,基于专家经验的方法,有限元法,载荷验证,基于可靠性理论的方法,基于外观调查的方法根据我国的公路养护技术规范的规定,桥梁技术状况评价等级分为一类,二类,三类,四类,对桥梁整体和桥梁部件均适用。将桥梁划分为15个部件,根据桥梁部件的缺损程度及其标度,缺损对结构使用功能的影响程度以及缺损发展变化情况等,对桥梁各部件分别进行评分,值域为0到5,“0”表示完好状况,“5”表示危险的状况,再根据桥梁部件的评分确定个部件的评鉴等级,桥梁状况的综合评价,此法采用的公式为式中DR为全桥结构技术状况评分(0100),评分高表示结构状况好,缺损少,RI为对桥梁各部件的评分(05),WI为桥梁个部件权重。当DR大于等于8888DR大于等于6060DR大于等于4040DR这样桥梁的对应级别为一类,二类,三类,四类。经验系数这是依据广泛的的调查研究,确定若干的影响承载力的系数及其取值范围,对桥梁承载能力进行评估的方法。被评估桥梁的承载能力为所有影响之和。基于设计规范的方法。桥梁设计规范是指导桥梁设计的标准。这一标准基于工程力学,结构试验和工程经验,切还在不断充实和完善。因此,利用桥规的计算理论来分析该桥梁承载能力的方法,具有坚实的理论基础并得到广泛的应用,然而直接套用桥梁规范于桥梁的话对于准确评估是不准确的,这是设计与评估的差异所致,例如,在评估阶段,可以获得较设计阶段更加坑定的信息按照结构可靠性理论的观点,这意味着评估时载荷和抗力的不定性要比设计时所考虑的要小,于是,在评估时可以适当减小某些安全系数的数值。在譬如设计采用线弹性方法分析破坏极限状态,但用这种方法来分析桥梁的实际承载能力,往往会得到偏于保守的,较为粗糙的结果。基于桥梁评估方法之专家意见调查方法专家意见查看直接收集。分析,归纳专家意见,对某一事件的可能结果做出评估方法,这种方法一直是军事,医学,气象预测,经济,工程等诸多方面的应用了多年。运用以不确定型层次分析法为基础的综合评估方法进行桥梁状态的综合评估,可分为分解,判断,综合,评估;分解分解主要是建立桥梁工作状态的递阶层次结构和由判断矩阵求解个指标的权重。把影响结构工作的状态的因素逐级分解为一层一层的,这样可以反映每一层之间的关系,从而得到指标数据。判断所谓的判断即是确定指标体系中不可再分解的指标的评语,也即指标的状态,在大型桥梁结构的综合评估中,指标评语的确定包含两个问题;一个是评价等级的确定,即对应于机构件的某个状态,我们应该将其划入哪个级别。另外一个是用什么样的方式来量化等级标准,即如何把语言表术转化为数字量。桥底层指标按表述方式的不同可分为;非量化指标和可量化指标。非量化指标主要指暂时无法定量表示的指标,如钢筋腐蚀,混凝土裂纹布置,混凝土保护层的风化等。无论是非量化还是量化指标都有一个由指标值转化为指标评价值得问题。对非量化指标而言,区间数可以在很大程度上描述事务的模糊性和不确定性,比之确定性的数字更能反映实际。同时。对大型桥梁进行评估时,一般有多个专家参与,但个个专家水平所不同,为使评估结果更好地反映桥梁的实际状态,应当对专家的评判采用加权平均。对可量化的指标而言,当实际测量值偏离桥状态时的最优值达到某种程度后,该测点可认为已处于危险状态,其值成为评估时的领结值,这两个值需要通过专家调查确定。综合大型桥梁的综合评估是个复杂的过程,为了确定评估结果的可靠性,一般需要多为专家的参与,同时应该考虑专家的评判水平。以不确定型层次分析法为基础的综合评估方法,共有两部分的内容需要专家参与,其一是通过专家知识调查的方式构造不确定型两比较判断矩阵,其二是对于人工检测指标的评估。评估输入实际的检测数值,按照一定的算法进行综合评估,给出相应的桥梁的状态等级,并提出相应的意见。BRIDGERATINGUSINGSYSTEMRELIABILITYASSESSMENTIIIMPROVEMENTSTOBRIDGERATINGPRACTICESNAIYUWANG,MASCE1BRUCERELLINGWOOD,DISTMASCE2ANDABDULHAMIDZUREICK,MASCE3ABSTRACTTHECURRENTBRIDGERATINGPROCESSDESCRIBEDINAASHTOMANUALFORBRIDGEEVALUATION,FIRSTEDITIONPERMITSRATINGSTOBEDETERMINEDBYALLOWABLESTRESS,LOADFACTOR,ORLOADANDRESISTANCEFACTORMETHODSTHESETHREERATINGMETHODSMAYLEADTODIFFERENTRATEDCAPACITIESANDPOSTINGLIMITSFORTHESAMEBRIDGE,ASITUATIONTHATHASSERIOUSIMPLICATIONSWITHREGARDTOPUBLICSAFETYANDTHEECONOMICWELLBEINGOFCOMMUNITIESTHATMAYBEAFFECTEDBYBRIDGEPOSTINGSORCLOSURESTHISPAPERISTHESECONDOFTWOPAPERSTHATSUMMARIZEARESEARCHPROGRAMTODEVELOPIMPROVEMENTSTOTHEBRIDGERATINGPROCESSBYUSINGSTRUCTURALRELIABILITYMETHODSTHEFIRSTPAPERPROVIDEDBACKGROUNDONTHERESEARCHPROGRAMANDSUMMARIZEDACOORDINATEDPROGRAMOFLOADTESTINGANDANALYSISTOSUPPORTTHERELIABILITYASSESSMENTLEADINGTOTHERECOMMENDEDIMPROVEMENTSTHISSECONDPAPERPRESENTSTHERELIABILITYBASISFORTHERECOMMENDEDLOADRATING,DEVELOPSMETHODSTHATCLOSELYCOUPLETHERATINGPROCESSTOTHERESULTSOFINSITUINSPECTIONANDEVALUATION,ANDRECOMMENDSSPECIFICIMPROVEMENTSTOCURRENTBRIDGERATINGMETHODSINAFORMATTHATISCONSISTENTWITHTHELOADANDRESISTANCEFACTORRATINGLRFROPTIONINTHEAASHTOMANUALFORBRIDGEEVALUATIONDOI101061/ASCEBE1943559200001712011AMERICANSOCIETYOFCIVILENGINEERSCEDATABASESUBJECTHEADINGSCONCRETEBRIDGESREINFORCEDCONCRETEPRESTRESSEDCONCRETELOADFACTORSRELIABILITYSTEELRATINGSAUTHORKEYWORDSBRIDGESRATINGCONCRETEREINFORCEDCONCRETEPRESTRESSEDCONDITIONASSESSMENTLOADSFORCESRELIABILITYSTEELSTRUCTURALENGINEERINGINTRODUCTIONTHEAASHTOMANUALFORBRIDGEEVALUATIONMBE,FIRSTEDITIONAASHTO2008ALLOWSBRIDGERATINGSTOBEDETERMINEDTHROUGHTHETRADITIONALALLOWABLESTRESSRATINGASRORLOADFACTORRATINGLFRMETHODSORBYTHEMORERECENTLOADANDRESISTANCEFACTORRATINGLRFRMETHOD,WHICHISCONSISTENTWITHTHEAASHTOLRFDBRIDGEDESIGNSPECIFICATIONS2007THESETHREERATINGMETHODSMAYLEADTODIFFERENTRATEDCAPACITIESANDPOSTEDLIMITSFORTHESAMEBRIDGENCHRP2001WANGETAL2009,ASITUATIONTHATCANNOTBEJUSTIFIEDFROMAPROFESSIONALENGINEERINGVIEWPOINTANDHASIMPLICATIONSFORTHESAFETYANDECONOMICWELLBEINGOFTHOSEAFFECTEDBYBRIDGEPOSTINGSORCLOSURESTOADDRESSTHISISSUE,THEGEORGIAINSTITUTEOFTECHNOLOGYHASCONDUCTEDAMULTIYEARRESEARCHPROGRAMAIMEDATMAKINGIMPROVEMENTSTOTHEPROCESSBYWHICHTHECONDITIONOFEXISTINGBRIDGESTRUCTURESINGEORGIAAREASSESSEDTHEENDPRODUCTOFTHISRESEARCHPROGRAMISSETOFRECOMMENDEDGUIDELINESFORTHEEVALUATIONOFEXISTINGBRIDGESELLINGWOODETAL2009THESEGUIDELINESAREESTABLISHEDBYACOORDINATEDPROGRAMOFLOADTESTINGANDADVANCEDFINITEELEMENTMODELING,WHICHHAVEBEENINTEGRATEDWITHINASTRUCTURALRELIABILITYFRAMEWORKTODETERMINEPRACTICALBRIDGERATINGMETHODSTHATARECONSISTENTWITHTHOSEUSEDTODEVELOPTHEAASHTOLRFDBRIDGEDESIGNSPECIFICATIONSAASHTO2007ITISBELIEVEDTHATBRIDGECONSTRUCTIONANDRATINGPRACTICESARESIMILARENOUGHINOTHERNONSEISMICAREASTOMAKETHEINFERENCES,CONCLUSIONS,ANDRECOMMENDATIONSVALIDFORLARGEREGIONSINTHECENTRALANDEASTERNUNITEDSTATESCEUSTHERECENTIMPLEMENTATIONOFLRFDANDITSCOMPANIONRATINGMETHOD,LRFR,BOTHOFWHICHHAVEBEENSUPPORTEDBYSTRUCTURALRELIABILITYMETHODS,ENABLEBRIDGEDESIGNANDCONDITIONASSESSMENTTOBEPLACEDONAMORERATIONALBASISNOTWITHSTANDINGTHESEADVANCES,IMPROVEDTECHNIQUESFOREVALUATINGTHEBRIDGEINITSINSITUCONDITIONWOULDMINIMIZETHELIKELIHOODOFUNNECESSARYPOSTINGFOREXAMPLE,MATERIALSTRENGTHSINSITUMAYBEVASTLYDIFFERENTFROMTHESTANDARDIZEDORNOMINALVALUESASSUMEDINDESIGNANDCURRENTRATINGPRACTICESATTRIBUTABLETOSTRENGTHGAINOFCONCRETEONONEHANDANDDETERIORATIONATTRIBUTABLETOAGGRESSIVEATTACKFROMPHYSICALORCHEMICALMECHANISMSONTHEOTHERSATISFACTORYPERFORMANCEOFAWELLMAINTAINEDBRIDGEOVERAPERIODOFYEARSOFSERVICEPROVIDESADDITIONALINFORMATIONNOTAVAILABLEATTHEDESIGNSTAGETHATMIGHTBETAKENINTOACCOUNTINMAKINGDECISIONSREGARDINGPOSTINGORUPGRADINGINVESTIGATINGBRIDGESYSTEMRELIABILITYRATHERTHANSOLELYRELYINGONCOMPONENTBASEDRATINGMETHODSMAYALSOBEOFSIGNIFICANTBENEFITPROPERCONSIDERATIONOFTHESEFACTORSISLIKELYTOCONTRIBUTETOAMOREREALISTICCAPACITYRATINGOFEXISTINGBRIDGESTHISPAPERISTHESECONDOFTWOCOMPANIONPAPERSTHATPROVIDETHETECHNICALBASESFORPROPOSEDIMPROVEMENTSTOTHECURRENTLRFRPRACTICETHEFIRSTPAPERWANGETAL2011SUMMARIZEDTHECURRENTBRIDGERATINGPROCESSANDPRACTICESINTHEUNITEDSTATES,ANDPRESENTEDTHERESULTSOFACOORDINATEDBRIDGETESTINGANDANALYSISPROGRAMCONDUCTEDTOSUPPORTREVISIONSTOTHECURRENTRATINGPROCEDURESTHISPAPERDESCRIBESTHERELIABILITYANALYSISFRAMEWORKTHATPROVIDESTHEBASISFORRECOMMENDEDIMPROVEMENTSTOTHEMBEANDRECOMMENDSSPECIFICIMPROVEMENTSTOTHEMBETHATADDRESSTHEPRECEDINGFACTORS1SENIORSTRUCTURALENGINEER,SIMPSON,GUMPERTZ,ANDHEGER,INC,41SEYONST,WALTHAM,MA02453FORMERLY,GRADUATERESEARCHASSISTANT,SCHOOLOFCIVILANDENVIRONMENTALENGINEERING,GEORGIAINSTITUTEOFTECHNOLOGY2PROFESSOR,SCHOOLOFCIVILANDENVIRONMENTALENGINEERING,GEORGIAINSTITUTEOFTECHNOLOGY,790ATLANTICDR,ATLANTA,GA303320355CORRESPONDINGAUTHOREMAILELLINGWOODGATECHEDU3PROFESSOR,SCHOOLOFCIVILANDENVIRONMENTALENGINEERING,GEORGIAINSTITUTEOFTECHNOLOGY,790ATLANTICDR,ATLANTA,GA303320355NOTETHISMANUSCRIPTWASSUBMITTEDONMARCH19,2010APPROVEDONAUGUST2,2010PUBLISHEDONLINEONOCTOBER14,2011DISCUSSIONPERIODOPENUNTILAPRIL1,2012SEPARATEDISCUSSIONSMUSTBESUBMITTEDFORINDIVIDUALPAPERSTHISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL16,NO6,NOVEMBER1,2011ASCE,ISSN10840702/2011/6863871/2500JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011/863DOWNLOADED21MAR2012TO1809522453REDISTRIBUTIONSUBJECTTOASCELICENSEORCOPYRIGHTVISITHTTP/WWWASCELIBRARYORGRELIABILITYBASESFORBRIDGELOADRATINGBRIDGEDESIGN,ASCODIFIEDINTHEAASHTOLRFDSPECIFICATIONS2007,ISESTABLISHEDBYMODERNPRINCIPLESOFSTRUCTURALRELIABILITYANALYSISTHEPROCESSBYWHICHEXISTINGBRIDGESARERATEDMUSTBECONSISTENTWITHTHOSEPRINCIPLESUNCERTAINTIESINTHEPERFORMANCEOFANEXISTINGBRIDGEARISEFROMVARIATIONSINLOADS,MATERIALSTRENGTHPROPERTIES,DIMENSIONS,NATURALANDARTIFICIALHAZARDS,INSUFFICIENTKNOWLEDGE,ANDHUMANERRORSINDESIGNANDCONSTRUCTIONELLINGWOODETAL1982GALAMBOSETAL1982NOWAK1999PROBABILITYBASEDLIMITSTATESDESIGN/EVALUATIONCONCEPTSPROVIDEARATIONALANDPOWERFULTHEORETICALBASISFORHANDLINGTHESEUNCERTAINTIESINBRIDGEEVALUATIONTHELIMITSTATESFORBRIDGEDESIGNANDEVALUATIONCANBEDEFINEDINTHEGENERALFORMGX01WHEREXX1X2X3XNLOADANDRESISTANCERANDOMVARIABLESONTHEBASISOFBRIDGEPERFORMANCEOBJECTIVES,THESELIMITSTATESMAYRELATETOSTRENGTHFORPUBLICSAFETYORTOEXCESSIVEDEFORMATION,CRACKING,WEAROFTHETRAFFICSURFACE,OROTHERSOURCESOFFUNCTIONALIMPAIRMENTASTATEOFUNSATISFACTORYPERFORMANCEISDEFINED,BYCONVENTION,WHENGX0THUS,THEPROBABILITYOFFAILURECANBEESTIMATEDASPFPGX0C138ZFXXDX2WHEREFXXJOINTDENSITYFUNCTIONOFXANDFAILUREDOMAININWHICHGX0INMODERNFIRSTORDERFORELIABILITYANALYSISMELCHERS1999,EQ2ISOFTENAPPROXIMATEDBYPFC03WHERESTANDARDNORMALDISTRIBUTIONFUNCTIONANDRELIABILITYINDEXFORWELLBEHAVEDLIMITSTATES,EQ3USUALLYISANEXCELLENTAPPROXIMATIONTOEQ2,ANDANDPFCANBEUSEDINTERCHANGEABLYASRELIABILITYMEASURESELLINGWOOD2000WHENTHEFAILURESURFACEINEQ1ISCOMPLEXORWHENTHERELIABILITYOFASTRUCTURALSYSTEM,INWHICHTHESTRUCTURALBEHAVIORISMODELEDTHROUGHFINITEELEMENTANALYSIS,ISOFINTEREST,EQ2CANBEEVALUATEDEFFICIENTLYBYMONTECARLOMCSIMULATIONTHEAASHTOLRFDBRIDGEDESIGNSPECIFICATIONS2007AREESTABLISHEDONFORELIABILITYANALYSIS,APPLIEDTOINDIVIDUALGIRDERSNOWAK1999KIMANDNOWAK1997TABSHANDNOWAK1991WITHTHESUPPORTINGPROBABILISTICMODELINGOFRESISTANCEANDLOADTERMSNOWAK1993BARTLETTANDMCGREGOR1996MOSESANDVERMA1987,ANEXAMINATIONOFEXISTINGBRIDGEDESIGNPRACTICESLEDTOATARGETRELIABILITYINDEX,EQUALTO35BASEDONA75YEARSERVICEPERIODNOWAK1999,MOSES2001CONSISTENTWITHSUCHRELIABILITYBASEDPERFORMANCEOBJECTIVE,THEAASHTOLRFDSPECIFICATIONSSTIPULATETHATINTHEDESIGNOFNEWBRIDGES125D15DA175LIRN4WHEREDDEADLOADEXCLUDINGWEIGHTOFTHEWEARINGSURFACEDAWEIGHTOFTHEWEARINGSURFACEASPHALTLIREPRESENTSLIVELOADINCLUDINGIMPACTRNDESIGNSTRENGTH,INWHICHRNNOMINALRESISTANCEANDRESISTANCEFACTORWHICHDEPENDSONTHEPARTICULARLIMITSTATEOFINTERESTTHISEQUATIONISFAMILIARTOMOSTDESIGNERSWHENTHERELIABILITYOFANEXISTINGBRIDGEISCONSIDERED,ALLOWANCESHOULDBEMADEFORTHESPECIFICKNOWLEDGEREGARDINGITSSTRUCTURALDETAILSANDPASTPERFORMANCEFIELDINSPECTIONDATA,LOADTESTING,MATERIALTESTS,ORTRAFFICSURVEYS,IFAVAILABLE,CANBEUTILIZEDTOMODIFYTHEPROBABILITYDISTRIBUTIONSDESCRIBINGTHESTRUCTURALBEHAVIORANDRESPONSEINEQ2THEMETRICFORACCEPTABLEPERFORMANCEISOBTAINEDBYMODIFYINGEQ2TOREFLECTTHEADDITIONALINFORMATIONGATHEREDPFPGX0JHC138PT5WHEREHREPRESENTSWHATISLEARNEDFROMPREVIOUSSUCCESSFULPERFORMANCE,INSERVICEINSPECTION,ANDSUPPORTINGINSITUTESTING,IFANYTHETARGETPROBABILITY,PT,SHOULDDEPENDONTHEECONOMICSOFREHABILITATION/REPAIR,CONSEQUENCESOFFUTUREOUTAGES,ANDTHEBRIDGERATINGSOUGHTINTHEAASHTOLRFRMETHOD2007,THETARGETFORDESIGNLEVELCHECKINGBYUSINGHL93LOADMODELATINVENTORYLEVELIS35,WHICHISCOMPARABLETOTHERELIABILITYFORNEWBRIDGES,WHEREASTHETARGETFORHL93OPERATINGLEVELANDFORLEGAL,ANDPERMITLOADSISREDUCEDTO25OWINGTOTHEREDUCEDLOADMODELANDREDUCEDEXPOSUREPERIOD5YEARSMOSES2001THEPRESENCEOFHINEQ5ISACONCEPTUALDEPARTUREFROMEQS2AND3,WHICHPROVIDETHEBASISFORLRFDFOREXAMPLE,TRAFFICDEMANDSONBRIDGESLOCATEDINDIFFERENTPLACESINTHEHIGHWAYSYSTEMMAYBEDIFFERENTTOTAKETHISSITUATIONINTOACCOUNT,LRFRINTRODUCESASETOFLIVELOADFACTORSFORTHELEGALLOADRATING,WHICHDEPENDONTHEINSITUTRAFFICDESCRIBEDBYTHEAVERAGEDAILYTRUCKTRAFFICADTTFURTHERMORE,THECOMPONENTNOMINALRESISTANCEINLRFRISFACTOREDBYASYSTEMFACTORSANDAMEMBERCONDITIONFACTORCINADDITIONTOTHEBASICRESISTANCEFACTORFORAPARTICULARCOMPONENTLIMITSTATETHESYSTEMFACTORDEPENDSONTHEPERCEIVEDREDUNDANCYLEVELOFAGIVENBRIDGEINITSRATING,WHEREASTHECONDITIONFACTORISTOACCOUNTFORTHEBRIDGESSITESPECIFICDETERIORATIONCONDITION,ANDPURPORTSTOINCLUDETHEADDITIONALUNCERTAINTYBECAUSEOFANYDETERIORATIONTHATMAYBEPRESENTTHEBASISFORTHELRFRTABULATEDVALUESFORCWILLBEFURTHEREXAMINEDLATERINTHISPAPERTHELRFROPTIONINTHEAASHTOMBEEXTENDSTHELIMITSTATEDESIGNPHILOSOPHYTOTHEBRIDGEEVALUATIONPROCESSINANATTEMPTTOACHIEVEAUNIFORMTARGETLEVELOFSAFETYFOREXISTINGHIGHWAYBRIDGESYSTEMSHOWEVER,THEUNCERTAINTYMODELSOFLOADANDRESISTANCEEMBEDDEDINTHELRFRRATINGFORMATREPRESENTTYPICALVALUESFORALARGEPOPULATIONOFBRIDGESINVOLVINGDIFFERENTMATERIALS,CONSTRUCTIONPRACTICES,ANDSITESPECIFICTRAFFICCONDITIONSALTHOUGHTHELRFRLIVELOADMODELHASBEENMODIFIEDFORSOMEOFTHESPECIFICCASESASDISCUSSEDPREVIOUSLY,THEBRIDGERESISTANCEMODELSHOULDALSOBE“CUSTOMIZED”FORANINDIVIDUALBRIDGEBYINCORPORATINGAVAILABLESITESPECIFICKNOWLEDGETOREFLECTTHEFACTTHATEACHBRIDGEISUNIQUEINITSASBUILTCONDITIONARATINGPROCEDURETHATDOESNOTINCORPORATEINSITUDATAPROPERLYMAYRESULTININACCURATERATINGSANDCONSEQUENTUNNECESSARYREHABILITATIONORPOSTINGCOSTSFOROTHERWISEWELLMAINTAINEDBRIDGES,ASINDICATEDBYMANYLOADTESTSNOWAKANDTHARMABALA1988BAKHTANDJAEGER1990MOSESETAL1994FUANDTANG1995FABERETAL2000BARKER2001BHATTACHARYAETAL2005IMPROVEMENTSINPRACTICALGUIDANCEWOULDPERMITTHEBRIDGEENGINEERTOINCLUDEMORESITESPECIFICKNOWLEDGEINTHEBRIDGERATINGPROCESSTOACHIEVEREALISTICEVALUATIONSOFTHEBRIDGEPERFORMANCETHISGUIDANCEMUSTHAVEASTRUCTURALRELIABILITYBASISIMPROVEMENTSINBRIDGERATINGBYUSINGRELIABILITYBASEDMETHODSINTHISSECTION,THEBRIDGERATINGSINLIGHTOFTHERELIABILITYBASEDUPDATINGOFINSERVICESTRENGTHDESCRIBEDINTHEPREVIOUSSECTIONAREEXAMINEDTHEPOSSIBILITIESOFINCORPORATINGAVAILABLESITESPECIFICDATAOBTAINEDFROMMATERIALTESTS,LOADTESTS,ADVANCED864/JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011DOWNLOADED21MAR2012TO1809522453REDISTRIBUTIONSUBJECTTOASCELICENSEORCOPYRIGHTVISITHTTP/WWWASCELIBRARYORGSTRUCTURALANALYSIS,ANDSUCCESSFULSERVICEPERFORMANCETOMAKEFURTHERRECOMMENDATIONSFORIMPROVINGRATINGANALYSISAREEXPLOREDINCORPORATIONOFINSITUMATERIALTESTINGTHECOMPANIONPAPERSUMMARIZEDTHELOADTESTOFBRIDGEID1290045,AREINFORCEDCONCRETETBEAMBRIDGETHATWASDESIGNEDACCORDINGTOTHEAASHTO1953DESIGNSPECIFICATIONFORH15LOADINGANDWASCONSTRUCTEDIN1957THESPECIFIED28DAYCOMPRESSIONSTRENGTHOFTHECONCRETEWAS172MPA2,500PSI,WHEREASTHEYIELDSTRENGTHOFTHEREINFORCEMENTWAS276MPA40KSITHESCHEDULEDDEMOLITIONOFTHISBRIDGEPROVIDEDANOPPORTUNITYTOSECUREDRILLEDCORESTODETERMINETHESTATISTICALPROPERTIESOFTHEINSITUSTRENGTHOFTHE51YEAROLDCONCRETEINTHEBRIDGEFOURINCHDIAMETERDRILLEDCORESWERETAKENFROMTHESLABOFTHEBRIDGEBEFOREITSDEMOLITIONSEVENCORESWERETAKENFROMTHESLABATSEVENDIFFERENTLOCATIONSALONGBOTHTHELENGTHANDWIDTHOFTHEBRIDGECORESALSOWERETAKENFROMTHREEOFTHEGIRDERSTHATWEREINGOODCONDITIONAFTERDEMOLITIONTHESEWERECUTINTO203MM8INLENGTHSANDTHEJAGGEDENDSWERESMOOTHEDANDCAPPED,RESULTINGINATOTALOF14GIRDERTESTCYLINDERSTESTSOFTHESE102203MM48INCYLINDERSCONFORMEDTOASTMSTANDARDC42ASTM1995ANDTHERESULTSAREPRESENTEDINTABLE1ANANALYSISOFTHESEDATAINDICATEDNOSTATISTICALLYSIGNIFICANTDIFFERENCEINTHECONCRETECOMPRESSIONSTRENGTHINTHEGIRDERSANDSLAB,ANDTHEDATAWERETHEREFORECOMBINEDFORFURTHERANALYSISTHEMEANAVERAGECOMPRESSIONSTRENGTHOFTHECONCRETEIS33MPA4,820PSIANDTHECOEFFICIENTOFVARIATIONCOVIS12,WHICHISREPRESENTATIVEOFGOODQUALITYCONCRETEBARTLETTANDMACGREGOR1996THEMEANSTRENGTHIS193TIMESTHESPECIFIEDCOMPRESSIONSTRENGTHOFTHECONCRETETHISINCREASEINCOMPRESSIONSTRENGTHOVERAPERIODOFMORETHAN50YEARSISTYPICALOFTHEINCREASESFOUNDFORGOODQUALITYCONCRETEBYOTHERINVESTIGATORSWASHAANDWENDT1975IFTHESERESULTSARETYPICALOFWELLMAINTAINEDOLDERCONCRETEBRIDGES,THEINSITUCONCRETESTRENGTHISLIKELYTOBESUBSTANTIALLYGREATERTHANTHE28DAYSTRENGTHTHATISCUSTOMARILYSPECIFIEDFORBRIDGEDESIGNORCONDITIONEVALUATIONACCORDINGLY,THEBRIDGEENGINEERSHOULDBEPROVIDEDINCENTIVESINTHERATINGCRITERIATORATEABRIDGEBYUSINGTHEBESTPOSSIBLEINFORMATIONFROMINSITUMATERIALSTRENGTHTESTINGWHENEVERFEASIBLEELLINGWOODETAL2009ITISCUSTOMARYTOBASETHESPECIFIEDCOMPRESSIONSTRENGTHOFCONCRETEONTHE10THPERCENTILEOFANORMALDISTRIBUTIONOFCYLINDERSTRENGTHSSTANDARD31805ACI2005ASUITABLEESTIMATEFORTHIS10THPERCENTILEBASEDONASMALLSAMPLEOFDATAISPROVIDEDBYFCC22X1C0KV6WHEREC22XSAMPLEMEANVSAMPLECOEFFICIENTOFVARIATIONANDKPLOWERCONFIDENCEINTERVALONTHE10THPERCENTILECOMPRESSIONSTRENGTHBYUSINGTHE21TESTSFROMBRIDGEID1290045WITHP75ASANEXAMPLE,K1520MONTGOMERY1996ANDFCCANBEEXPRESSEDASFC1152001248203941PSI2717MPA,AVALUETHATIS58HIGHERTHANTHE172MPA2,500PSITHATOTHERWISEWOULDBEUSEDINTHERATINGCALCULATIONSINTHEFEMODELINGOFTHISBRIDGETHATPRECEDEDTHESESTRENGTHTESTS,THECONCRETECOMPRESSIONSTRENGTHWASSETAT172MPA2,500PSI,WHICHWASTHEONLYINFORMATIONAVAILABLEBEFORETHEMATERIALTESTTODETERMINETHEIMPACTOFUSINGTHEACTUALCONCRETESTRENGTHINANOLDERBRIDGEONTHERATINGPROCESS,THEFINITEELEMENTMODELWASREVISEDTOACCOUNTFORTHEINCREASEDCONCRETECOMPRESSIONSTRENGTHANDTHECORRESPONDINGINCREASEINSTIFFNESSINTOTHEANALYSISOFTHEBRIDGEONLYAMODESTENHANCEMENTINTHEESTIMATEDBRIDGECAPACITYINFLEXUREWASOBTAINED,BUTA34INCREASEWASACHIEVEDINTHESHEARCAPACITYRATINGSFORTHEGIRDERSBYUSINGTHERESULTSOFTABLE1BRIDGESYSTEMRELIABILITYASSESSMENTONTHEBASISOFSTATICPUSHDOWNANALYSISALTHOUGHCOMPONENTBASEDDESIGNOFANEWBRIDGEPROVIDESADEQUATESAFETYATREASONABLECOST,COMPONENTBASEDEVALUATIONOFANEXISTINGBRIDGEFORRATINGPURPOSESMAYBEOVERLYCONSERVATIVEANDRESULTINUNNECESSARYREPAIRORPOSTINGCOSTSITISPREFERABLETOPERFORMLOADRATINGREGARDINGBRIDGEPOSTINGORROADCLOSURETHROUGHASYSTEMLEVELANALYSISAPROPERLYCONDUCTEDPROOFLOADTESTCANBEANEFFECTIVEWAYTOLEARNTHEBRIDGESSTRUCTURALPERFORMANCEASASYSTEMANDTOUPDATETHEBRIDGELOADCAPACITYASSESSMENTINSITUATIONSINWHICHTHEANALYTICALAPPROACHPRODUCESLOWRATINGS,ORSTRUCTURALANALYSISISDIFFICULTTOPERFORMBECAUSEOFDETERIORATIONORLACKOFDOCUMENTATIONSARAFANDNOWAK1998HOWEVER,APROOFLOADTESTREPRESENTSASIGNIFICANTINVESTMENTINCAPITAL,TIME,ANDPERSONNEL,ANDTHETRADEOFFBETWEENTHEINFORMATIONGAINANDTHERISKOFDAMAGINGTHEBRIDGEDURINGTHETESTMUSTBECONSIDEREDPROOFTESTSARERARELYCONDUCTEDBYTHESTATEDOTSWANGETAL2009FORRATINGPURPOSESONEOFTHEKEYCONCLUSIONSFROMTHECOMPANIONPAPERWANGETAL2011,INWHICHBRIDGERESPONSEMEASUREMENTSOBTAINEDFROMTHELOADTESTSOFTHEFOURBRIDGESWERECOMPAREDWITHTHERESULTSOFFINITEELEMENTANALYSESOFTHOSEBRIDGESWITHABAQUS2006,WASTHATTHEFINITEELEMENTMODELINGPROCEDUREWASSUFFICIENTFORCONDUCTINGVIRTUALLOADTESTSOFSIMILARBRIDGESTHESEVIRTUALLOADTESTSCANPROVIDETHEBASISFORDEVELOPINGRECOMMENDATIONSFORIMPROVINGGUIDELINESFORBRIDGERATINGSBYUSINGSTRUCTURALRELIABILITYPRINCIPLESASNOTEDINTHEINTRODUCTORYSECTION,SUCHGUIDELINESREQUIRETHEBRIDGETOBEMODELEDASASTRUCTURALSYSTEMTOPROPERLYIDENTIFYTHEPERFORMANCELIMITSTATESONWHICHSUCHGUIDELINESARETOBEBASEDTOIDENTIFYSUCHPERFORMANCELIMITSTATESANDTOGAINAREALISTICAPPRAISALOFTHECONSERVATISMINHERENTINCURRENTBRIDGEDESIGNANDCONDITIONRATINGPROCEDURES,ASERIESOFSTATICPUSHDOWNANALYSESOFTHEFOURBRIDGESWASPERFORMEDTHESEANALYSESAREAIMEDATDETERMININGTHEACTUALSTRUCTURALBEHAVIOROFTYPICALBRIDGESWHENLOADEDWELLBEYONDTHEIRDESIGNLIMITASASIDELIGHT,THEYPROVIDEADDITIONALINFORMATIONTOSUPPORTRATIONALEVALUATIONOFPERMITLOADAPPLICATIONSSECTION6A45INTHEMANUALOFBRIDGEEVALUATIONINAPUSHDOWNANALYSIS,TWORATINGVEHICLESAREPLACEDSIDEBYSIDEONTHEBRIDGEINAPOSITIONTHATMAXIMIZESTHERESPONSEQUANTITYOFINTERESTINTHEEVALUATIONEG,MAXIMUMMOMENT,SHEAR,ANDDEFLECTIONTHELOADSARETHENSCALEDUPWARDSTATICALLYANDTHEPERFORMANCEOFTHEBRIDGESYSTEMISMONITOREDTHEDEADWEIGHTOFTHEBRIDGESTRUCTUREISINCLUDEDINTHEANALYSISTHERESPONSEISINITIALLYELASTICASTHESTATICLOADINCREASES,HOWEVER,ELEMENTSOFTHEBRIDGESTRUCTUREBEGINTOYIELD,CRACK,ORBUCKLE,ANDTHEGENERALIZEDLOADDEFLECTIONBEHAVIORBECOMESNONLINEARIFTHEBRIDGESTRUCTUREISREDUNDANTANDTHESTRUCTURALELEMENTBEHAVIORSAREDUCTILE,SUBSTANTIALLOADREDISTRIBUTIONMAYOCCURATSOMEPOINT,HOWEVER,ASMALLINCREMENTINSTATICLOADLEADSTOALARGEINCREMENTINDISPLACEMENTATTHATPOINT,THEBRIDGEHASREACHEDITSPRACTICALLOADCARRYINGLIMIT,ANDISATASTATEOFINCIPIENTCOLLAPSETABLE1COMPRESSIONTESTSOF48INCORESDRILLEDFROMRCCONCRETEBRIDGEID1290045SOURCENUMBERAVERAGEPSISTANDARDDEVIATIONPSICOEFFICIENTOFVARIATIONGIRDER144,880603012SLAB74,698573012OVERALL214,820586012NOTE1PSI69PAJOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011/865DOWNLOADED21MAR2012TO1809522453REDISTRIBUTIONSUBJECTTOASCELICENSEORCOPYRIGHTVISITHTTP/WWWASCELIBRARYORGTHESTATICPUSHDOWNANALYSISISILLUSTRATEDINFIG1FORTHERCTBEAMBRIDGEID1290045THEFEMODELINGWASPERFORMEDWITHABAQUS2006,WITHRANDOMMATERIALPROPERTIESDETERMINEDBYTHEIRRESPECTIVEMEANVALUESTHEPOINTOFINITIALYIELDINGOCCURSATAPPROXIMATELY431TIMESTHEHS2044DESIGNLOADCONFIGURATION,ATADEFLECTIONOFAPPROXIMATELY36MM14IN,WHICHISEQUALTOAPPROXIMATELY1345TIME
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:桥梁滑动式挂篮设计(全套含44张CAD图纸)
链接地址:https://www.renrendoc.com/p-7597116.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!