前麦弗逊独立悬架毕业设计(全套含CAD及三维图纸优秀)

前麦弗逊独立悬架毕业设计(全套含CAD及三维图纸优秀)

收藏

资源目录
跳过导航链接。
前麦弗逊独立悬架毕业设计(全套含CAD及三维图纸优秀).zip
设计说明书(论文).doc---(点击预览)
答辩PPT.ppt---(点击预览)
摘要目录.doc---(点击预览)
前麦弗逊独立悬架毕业设计.doc---(点击预览)
catia建模
悬架
gan.CATPart
hbbQ.CATPart
hengLG QIU.CATPart
hengLG.CATPart
lunGU.CATPart
luogan.CATPart
M12lm.CATPart
M16.CATPart
m8LM.CATPart
NEW LT.CATPart
NEW LUNGU.CATPart
NEW L GU .CATProduct
Product1.CATProduct
Product1.stp
qiutou.CATPart
shanggai.CATPart
tao tong.CATPart
TH.CATPart
wendinggan.CATPart
XBBZP.CATProduct
xiabaibi.CATPart
yuzhuanxjie.CATPart
zhuangxjie .CATPart
转向系
1.CATPart
10.CATPart
15.CATPart
16.CATPart
3.CATPart
4.CATPart
caogang.CATPart
chitaoxiaduan.CATProduct
dianzi.CATPart
diz2uo.CATPart
dizuo.CATPart
GEN-NP-8U5A-110401-HA10EDFH.CATProduct
GEN-NP-8U5A-3001-HA10EDFH.CATPart
GEN-NP-8U5A-3004-HA10EDFH.CATPart
GEN-NP-8U5A-3005-HA10EDFH.CATPart
GEN-NP-8U5A-3006-HA10EDFH.CATPart
GEN-NP-8U5A-3010-HA10EDFH.CATPart
gongzigang.CATPart
luosi123.CATPart
new2.CATProduct
Part2.CATPart
Partchangzhou.CATPart
Partchitiao.CATPart
Partjietou.CATPart
Partwogan.CATPart
Partwogan33.CATPart
pingtai.CATPart
Product9zhongjian.CATProduct
sh2anggai gai.CATPart
shanggai gai.CATPart
taotong.CATPart
zhuangpeitu.CATProduct
三维图纸
gan.CATPart
hbbQ.CATPart
hengLG QIU.CATPart
hengLG.CATPart
lunGU.CATPart
luogan.CATPart
M12lm.CATPart
M16.CATPart
m8LM.CATPart
NEW LT.CATPart
NEW LUNGU.CATPart
NEW L GU .CATProduct
Product1.CATProduct
qiutou.CATPart
shanggai.CATPart
tao tong.CATPart
TH.CATPart
wendinggan.CATPart
XBBZP.CATProduct
xiabaibi.CATPart
yuzhuanxjie.CATPart
zhuangxjie .CATPart
三维图.jpg
参考文献
麦弗逊悬架仿真分析.nh
外文翻译
1总装图.dwg
2检验-a2.dwg
3贮油筒-a2.dwg
4弹簧-a2.dwg
5工作缸-a2.dwg
6减震杆-a2.dwg
7导向套-a3.dwg
前悬架安装图.dwg
前摆臂总成.dwg
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

编号:7650688    类型:共享资源    大小:35.10MB    格式:ZIP    上传时间:2018-01-23 上传人:机****料 IP属地:河南
50
积分
关 键 词:
前麦弗逊 独立 悬架 毕业设计 全套 cad 三维 图纸 优秀 优良
资源描述:


内容简介:
STUDYONNEURALNETWORKSCONTROLALGORITHMSFORAUTOMOTIVEADAPTIVESUSPENSIONSYSTEMSLJFU,JGCAOSCHOOLOFAUTOMOBILEENGINEERING,CHONGQINGINSTITUTEOFTECHNOLOGY,XINGSHENGROADNO04YANGJIAPING,CHONGQING,CHINA400050EMAILFLJCQITEDUCNABSTRACTTHESEMIACTIVESUSPENSION,WHICHCONSISTSOFPASSIVESPRINGANDACTIVESHOCKABSORBERINTHELIGHTOFDIFFERENTROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONS,ISTHEMOSTPOPULARAUTOMOTIVESUSPENSIONBECAUSEACTIVESUSPENSIONISCOMPLICATEDINSTRUCTUREANDPASSIVESUSPENSIONCANNOTMEETTHEDEMANDSOFVARIOUSROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONSINTHISPAPER,ANEUROFUZZYADAPTIVECONTROLCONTROLLERVIAMODELINGOFRECURRENTNEURALNETWORKSOFAUTOMOTIVESUSPENSIONISPRESENTEDTHEMODELINGOFNEURALNETWORKSHASIDENTIFIEDAUTOMOTIVESUSPENSIONDYNAMICPARAMETERSANDPROVIDEDLEARNINGSIGNALSTONEUROFUZZYADAPTIVECONTROLCONTROLLERINORDERTOVERIFYCONTROLRESULTS,AMINIBUSFITTEDWITHMAGNETORHEOLOGICALFLUIDSHOCKABSORBERANDNEUROFUZZYCONTROLSYSTEMBASEDONDSPMICROPROCESSORHASBEENEXPERIMENTEDWITHVARIOUSVELOCITYANDROADSURFACESTHECONTROLRESULTSHAVEBEENCOMPAREDWITHTHOSEOFOPENLOOPPASSIVESUSPENSIONSYSTEMTHESERESULTSSHOWTHATNEURALCONTROLALGORITHMEXHIBITSGOODPERFORMANCETOREDUCTIONOFMINIBUSVIBRATIONIINTRODUCTIONTHEMAINFUNCTIONSOFAUTOMOTIVESUSPENSIONSYSTEMARETOPROVIDESUPPORTTHEWEIGHTOFAUTOMOBILE,TOPROVIDESTABILITYANDDIRECTIONCONTROLDURINGHANDLINGMANEUVERSANDTOPROVIDEEFFECTIVEISOLATIONFROMROADDISTURBANCESTHESEDIFFERENTTASKSLEADTOCONFLICTINGDESIGNREQUIREMENTSTHESEMIACTIVESUSPENSION,WHICHCONSISTSOFPASSIVESPRINGANDACTIVESHOCKABSORBERWITHCONTROLLABLEDAMPINGFORCEINTHELIGHTOFDIFFERENTROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONS,ISTHEMOSTPOPULARAUTOMOTIVESUSPENSIONBECAUSETHEACTIVESUSPENSIONISCOMPLICATEDINSTRUCTUREANDCONVENTIONALPASSIVESUSPENSIONCANNOTMEETTHEDEMANDSOFDIFFERENTROADCONDITIONSANDAUTOMOBILERUNNINGCONDITIONSSIMIACTIVESUSPENSIONWITHVARIABLEMAGNETORHEOLOGICALMRFLUIDSHOCKABSORBERSHASSOMEADVANTAGESINREDUCINGAUTOMOBILEVIBRATIONATRELATIVELOWCASTANDPOWERSOFAR,THEREAREANUMBEROFCONTROLMETHODSTHATHAVEBEENDEVELOPEDFORSEMIACTIVESUSPENSION,STARTWITHSKYHOOKMETHODDESCRIBEDBYKARNOOPP,ETALLTHISMETHODATTEMPTSTOMAKETHESHOCKABSORBEREXERTAFORCETHATISPROPORTIONALTOTHEABSOLUTEVELOCITYBETWEENSPRUNGMASSESSOMEINVESTIGATIONSUSECRLIAO,BCHENSCHOOLOFAUTOMOBILEENGINEERING,CHONGQINGINSTITUTEOFTECHNOLOGY,XINGSHENGROADNO04YANGJIAPING,CHONGQING,CHINA400050EMAILCHENBAOCQITEDUCNLINEARSUSPENSIONMODEL,WHICHISLINEARIZEDAROUNDTHEOPERATIONALPOINTS,ANDCONTROLALGORITHMAREDERIVEDUSINGLINEARMODELS,SUCHASLQGANDROBUSTCONTROL2,3THESECONTROLMETHODSCANNOTMAKEAFULLEXPLOITATIONOFSEMIACTIVESUSPENSIONRESOURCESBECAUSEOFAUTOMOTIVESUSPENSIONISINHERENTNONLINEARPERFORMANCEINORDERTOIMPROVEPERFORMANCEOFNONLINEARSUSPENSIONSYSTEM,SOMEINTELLIGENTCONTROLTECHNIQUES,SUCHASFUZZYLOGICCONTROL,NEURALNETWORKSCONTROLANDNEUROFUZZYCONTROL,HAVEBEENRECENTLYAPPLIEDTONONLINEARSUSPENSIONCONTROLBYRESEARCHERS4,5INTHISPAPER,ANEUROFUZZYADAPTIVECONTROLCONTROLLERISAPPLIEDTOCONTROLSUSPENSIONVIBRATIONVIAMODELINGOFRECURRENTNEURALNETWORKSOFAUTOMOTIVESUSPENSIONANDCONTINUOUSLYVARIABLEMRSHOCKABSORBERSTHECONTROLLERSTRUCTURESDESIGNANDNEUROFUZZYCONTROLALGORITHMSAREPRESENTEDINSECTION2ARECURRENTNEURALNETWORKSDYNAMICSMODELINGOFSUSPENSIONARESHOWNRESPECTIVELYINSECTION3THECONTROLSYSTEMEXPERIMENTATIONSAREGIVENINSECTION4ANDSOMECONCLUSIONSAREFINALLYDRAWNINSECTION5HINEUROFUZZYADAPTIVECONTROLALGORITHMSFORAUTOMOTIVESUSPENSIONSTHENEUROFUZZYCONTROLSYSTEMPRESENTEDINTHISPAPER,SHOWNINFIGURE1,ISCOMPOSEDOFANEUROFUZZYNETWORKANDARECURRENTNEURALNETWORKMODELINGOFMINIBUSSUSPENSIONTHENEUROFUZZYNETWORKISDEFINEDASADAPTIVECONTROLLER,WHICHHASFUNCTIONOFLEARNINGANDCONTROLTHEFUNCTIONOFRECURRENTNEURALNETWORKISTOIDENTIFYMINIBUSSUSPENSIONMODELPARAMETERSYTANDYDTARESYSTEMACTUALOUTPUTANDSYSTEMDESIREOUTPUTRESPECTIVELYINFIGURE1XLTISSYSTEMERROROFSYSTEMACTUALOUTPUTBETWEENSYSTEMDESIREOUTPUT,X2TISSYSTEMERRORRATEOFSYSTEMACTUALOUTPUTBETWEENSYSTEMDESIREOUTPUTXITANDX2TAREDEFINEDASFELLOWSXITETYTYDT1X2TETET1ET20780394224/05/2000C2005IEEE1795FIG1STRUCTUREOFNEURALNETWORKSCONTROLSYSTEMFORSUSPENSIONNETWORKSCONTROLSYSTEMTHEGLOBALSETSOFLINGUISTICVARIABLESAREDEFINEDRESPECTIVELYASFELLOWSE,E,1ATJUUU,UTHENEUROFUZZYCONTROLLERHASFOURLAYERSNEURONS,INWHICHTHEFIRSTANDTHESECONDLAYERSCORRESPONDTOTHEFUIZZYRULESIFPART,THETHIRDLAYERCORRESPONDSTOTHEINFERENCEANDTHEFORTHLAYERCORRESPONDSTOTHEFUZZYRULESTHENPARTTHESETSXL,X2ANDUARERESPECTIVELYDIVINEDINTOSEVENFUZZYSUBSETSOFWHICHFUZZYSETSX1,X2UARECOMPOSEDASFALLOWSRULESX1NB,NM,NS,ZE,PS,PM,PBX2NB,NM,NS,ZE,PS,PM,PBUNB,NM,NS,ZE,PS,PM,PBINTHISPAPER,THEGAUSSIANMEMBERSHIPFUNCTIONAREUSEDINELEMENTSOFFUZZYSETSX1X2ANDTHEELEMENTSOFFUZZYSETUISDEFINEDASFOLLOWINGMEMBERSHIPFUNCTIONCIUJ0OTHERWISE03I3K1,2,349J13,23,374949LAYER443WKAND04I4/03K1K1WHEREXLTX2TARETHEINPUTSOFNEURALNETWORKS,WKISWEIGHTOFNEURALNETWORK,04ISTHEOUTPUTOFNEURALNETWORKSINWHICH04U,AI,B,JARETHECENTRALVALUESOFGAUSSIANMEMBERSHIPFUNCTIONLEARNINGALGORITHMSOFTHENEURALNETWORKSCONTROLLERISBASEDONGRADIENTDESCENTBYMEANSOFERRORSIGNALBACKPROPAGATIONMETHODTHEERRORBACKPROPAGATIONALGORITHMSACCOMPLISHSYNAPTICWEIGHTADJUSTMENTTHROUGHMINIMIZATIONOFCOSTFUNCTION5MALGORITHMFORRECURRENTNEURALNETWORKSSUSPENSIONDYNAMICALMODELINGARECURRENTNEURALNETWORKDESIGNEDTOAPPROXIMATETOTHEACTUALOUTPUTOFSUSPENSIONYTISTHREELAYERNEURALNETWORKWITHONELOCALFEEDBACKLOOPINTHEHIDDENLAYER,WHOSEARCHITECTURESARESHOWNINFIGURE3THEPROPERTYTHATISOFPRIMARYSIGNIFICANCEFORRECURRENTNEURALNETWORKISTHEABILITYOFTHENETWORKTOLEARNFROMITSENVIRONMENTANDTOIMPROVEITSPERFORMANCESBYMEANSOFPROCESSOFADJUSTMENTSAPPLIEDTOITSWEIGHTSTHERECURRENTNETWORKWITHINPUTSIGNALIITUTANDI2TYT1HASOUTPUTYTBYLOCALFEEDBACKLOOPNEURONINTHEHIDDENLAYERWHOSEOUTPUTSUMISSJTCORRESPONDINGTOTHENEURONJTH3FIG2SCHEMATICOFNEURALNETWORKSCONTROLLERFORADAPTIVESUSPENSIONWHEREUEUTHEINPUT/OUTPUTISPRESENTEDASFOLLOWSACCORDINGTOFIGURE2LAYER1I1XTANDOXITI1,2LAYER2I2TAI2/B2ANDOEPXI1,2J1,2,37LAYER3I13TUX2QIANDFIG3SCHEMATICOFNEURALNETWORKSMODELINGOFSUSPENSIONSYSTEM4SY,WITWJD_XJT_1I1ITWJXJT_LQYJT1WXITJL561796WHEREWI,WAREWEIGHTOFTHERECURRENTNEURALNETWORK,XJTISOUTPUTOFNEURONWITHLOCALFEEDBACKLOOPNEURONINTHEHIDDENLAYER,P,QAREINPUTNEURONNUMBERANDFEEDBACKNEURONNUMBERRESPECTIVELYTHEACTIVATIONFUNCTIONFORBOTHINPUTNEURONSANDOUTPUTNEURONSISLINEARFUNCTION,WHILETHEACTIVATIONFORNEURONSINTHEHIDDENLAYERISSIGMOIDFUNCTIONHEOBJECTIVEFUNCTIONETCANBEDEFMEDINTHETERMSOFTHEERRORSIGNALETASET_YTYT21E2T722THATIS,ETISTHEINSTANTANEOUSVALUEOFTHEERRORENERGYTHESTEPBYSTEPADJUSTMENTSTOTHESYNAPTICWEIGHTSOFNEURONARECONTINUEDUNTILTHESYSTEMREACHSTEADYSTATE,IETHESYNAPTICWEIGHTSAREESSENTIALLYSTABILIZEDDIFFERENTIATINGETWITHRESPECTTOWEIGHTVECTORWYIELDSAET_8ET0Y8FROMEXPRESSION1,2AND3,DIFFERENTIATINGAT0DIWITHRESPECTTOTHEWEIGHTVECTORW1W,W,YRESPECTIVELYYIELDSASTXTASTWOAX1QWAXITAWJJAWJFROM4,5AND6,ANALYZINGVALUEOFSYNAPTICWEIGHTISDETERMINEDBYWT1WTQET89T12WHEREQTHELEANINGRATEPARAMETER,ADETAILEDCONVERGENCEANALYSISOFTHERECURRENTTRAININGALGORITHMISRATHERCOMPLICATEDTOACQUIRETHELEANINGRATEPARAMETERVALUEACCORDINGTOEXPRESSION13,THEWEIGHTVECTORWFORRECURRENTNEURALNETWORKCANBEADJUSTEDWEESTABLISHATHELYAPUNOVFUNCTIONASFOLLOWSVT1/2E2T,WHOSECHANGEVALUEAVTCANBEDETERMINEDAFTERSOMETITERATIONS,INTHESENSETHAT13WEHAVENOTICEDTHATTHEERRORSIGNALETAFTERSOMETITERATIONSCANBEEXPRESSEDASFOLLOWSFROMEXPRESSION13AND14,AETAOTAETAET,AWQET77ET,THEAW“O“WAWO“WLYAPUNOVFUNCTIONINCREMENTCANDETERMINEDAFTERSOMETITERATIONSASFOLLOWS14MTTQTV2ETVTWHERET22JT16T2A10LPQ25L0TLL2QL277O220W97MAXAT29IFQF2,THENAVTO,WAX1TDANDAWJX1TUXIYIELDSRESPECTIVELYRECURRENTFORMULASAX1TAFSTFXXTT11AX1O,WJDAXITANIAFSTWATI4LANIAX1O11AVN0HAVINGCOMPUTEDTHESYNAPTICADJUSTMENT,THEUPDATEDNAMELYTHERECURRENTTRAININGALGORITHMISCONVERGENTIVROADTESTANDRESULTSANALYSESTOMAKEADEMONSTRATIONTHEVALIDITYOFNEURALCONTROLALGORITHMPROPOSEDINTHEPAPER,ANEXPERIMENTALMINIBUSSUSPENSIONWITHMRFLUIDSHOCKABSORBERHASBEENMANUFACTUREDINCHINATHEMINIBUSADAPTIVESUSPENSIONSYSTEMCONSISTSOFADSPMICROPROCESSOR,8ACCELERATIONSENSORS,4MRFLUIDSHOCKABSORBERS,AND1CONTROLLABLEELECTRICCURRENTPOWERWITHINPUTVOLTAGE12VTHEDSPMICROPROCESSORRECEIVESSUSPENSIONVIBRATIONSIGNALINPUTFROMACCELEROMETERSMOUNTEDRESPECTIVELYSPRUNGMASSANDUNSPRUNGMASSINACCORDANCEWITHVIBRATIONSIGNALANDCONTROLSCHEMEINTHISPAPER,THEDSPMICROPROCESSORADJUSTSDAMPINGOFADAPTIVESUSPENSIONBYAPPLICATIONCONTROLSIGNALTOTHECONTROLLABLEELECTRICCURRENTPOWERCONNECTEDTOELECTROMAGNETICCOILINMRFLUIDSHOCKABSORBERSMAGNETICFIELDPRODUCEDBYTHEELECTROMAGNETICCOILINMRFLUIDSHOCKABSORBERSCANDVARYDAMPINGFORCEINBOTHCOMPRESSIONANDREBOUNDBYADJUSTMENTOFFLOW1797II,VT12T1E2T2BEHAVIORSOFMRFLUIDSINDAMPINGCHANNELSRAODTESTONMINIBUSADAPTIVESUSPENSIONBASEDNEURALNETWORKSCONTROLPRESENTEDINTHISPAPERARECARRIEDOUTINDCLASSROADSURFACESRESPECTIVELYINRUNNINGVELOCITY30,40,50KM/HDURINGROADTEST,EXPERIMENTALMINIBUSRUNSEACHTESTCONDITIONATACONSTANTSPEEDTHETESTEXPERIMENTSOFADAPTIVESUSPENSIONWITHNEURALNETWORKSANDPASSIVESUSPENSIONSYSTEMWERECARRIEDOUTREPEATEDLYUNDERSAMEROADSURFACEANDRUNNINGVELOCITYTESTRESULTSLISTEDINTABLE1HAVESHOWNTHATTHEADAPTIVESUSPENSIONWITHNEURALNETWORKSCANREDUCEVIBRATIONPOWERSPECTRALDENSITIESOFBOTHSPRUNGMASSANDUNSPRUNGMASSFIGURE4ISTHEMINBUSSUSPENSIONVIBRATIONPOWERSPECTRALDENSITIESOFBOTHSPRUNGMASSANDUNSPRUNGMASSWITHPASSIVEANDADAPTIVESUSPENSIONSYSTEMBYDCLASSROADSURFACEITISCLEARTHATNEURALNETWORKSCONTROLIMPROVESPERFORMANCESOFMINIBUSSUSPENSIONWITHMAINLYIMPROVEMENTSOCCURRINGABOUTSPRUNGMASSRESONANCEPEAKTHEPOWERSPECTRALDENSITIESINDICATETHATTHEADAPTIVESUSPENSIONSYSTEMWITHNEURALNETWORKSCONTROLCANREDUCEMINIBUSVIBRATIONGREATLYCOMPAREDWITHPASSIVESUSPENSIONIFEXCELLENTFIZZYCONTROLRULESANDRATIONALMODELINGOFSHOCKABSORBERANDSUSPENSIONCANBEOBTAINED,THEADAPTIVESUSPENSIONSYSTEMWITHNEURALNETWORKSCONTROLWILLIMPROVEFARTHERRIDECOMFORTANDROADHOLDINGANDHANDLINGSTABILITYOFAUTOMOBILEINTHEFUTURETABLEIMINBUSSUSPENSIONROADTESTRESULTSSPRUNGMASSANDUNSPRUNGMASSACCELERATIONRMSVALUESDCLASSROADSPEED301KM/H401M/H50KMLHPASSIVECONTROLREDUCEPASSIVECONTROLREDUCEPASSIVECONTROLREDUCE|MASS1037560325213404140034491670469403966155MASSPG160111426610918975166031252346820652120MASSIC,4A|1,T0RI01101LO1FRY0QGCO1OKAIDELAR10F1FRCQVOFIG4MINBUSSUSPENSIONVIBRATIONPOWERSPECTRALDENSITIESOFSPRUNGMASSLEFTANDUNSPRUNGMASSRIGHTWITHCONTROLANDPASSIVERUNNINGSPEED40KM/HVCONCLUSIONSINTHISPAPER,ANEWRECURRENTNEURALNETWORKSORIENTEDSUSPENSIONMODELANDNEUROFUZZYCONTROLSCHEMESFORTHEMINIBUSSUSPENSIONSYSTEMWEREINVESTIGATEDUPONTHEREQUIREMENTOFUSING8ACCELERATIONSENSORS,ADSPCONTROLLERWITHGAINSCHEDULINGWASDEVELOPEDCONSIDERINGTHECOMPLEXITYOFTHEMRFLUIDSHOCKABSORBER,THEACTUATORDYNAMICSHASBEENINCORPORATEDDURINGTHEHARDWAREINTHELOOPSIMULATIONSITWASDEMONSTRATEDTHATTHEADAPTIVECONTROLSYSTEMCOULD1798ACHIEVEACOMPETITIVECONTROLPERFORMANCEBYADOPTINGTHENEUROFUZZYCONTROLSCHEMESANDRECURRENTNEURALNETWORKSORIENTEDSUSPENSIONBECAUSETHECONTROLLAWDESIGN,THEGAINSCHEDULINGSTRATEGY,ANDTHEHARDWAREINTHELOOPSIMULATIONMETHODDEVELOPEDINTHISPAPERARERESTRICTEDTOAMINBUSSUSPENSIONSYSTEMWITHSPECIFICPARAMETERS,THEENTIRESTRATEGYCANBEEXTENDEDTOOTHERSEMIACTIVESYSTEMIFSUSPENSIONPARAMETERSARECHANGEDROADTESTRESULTSSHOWTHATNEUROFIZZYCONTROLLERCANEFFECTIVELYIMPROVEMINIBUSRIDECOMFORTANDROADHOLDINGITISFEASIBLETOEMPLOYDSPCONTROLTOSUPPRESSWHOLEVEHICLEVIBRATION,INCLUDINGINSPRUNGMASSVIBRATIONANDUNSPRUNGMASSVIBRATIONTHENEUROFUZZYCONTROLLERSHOWSSOMEROBUSTCAPABILITYANDCANMINIMIZEINFLUENCESONSUSPENSIONMODELPARAMETERSCHANGES,WHICHAREIMPORTANTFACTORSTOIMPROVECONTROLSYSTEMPERFORMANCEREFERENCES1KANOPPD1995ACTIVEANDSEMIACTIVEVIBRATIONISOLATION,TRANSACTIONSOFASME,JOURNALOFSPECIAL50THANNIVERSARYDESIGNISSUE,VOL117,PP1171252CHANTRNUWATHHANA,SANDPENG,H1999ADAPTIVEROBUSTCONTROLFORACTIVESUSPENSION,PROCEEDINGSOFTHEAMERICANCONTROLCONFERENCE,SANDIEGO,CALIFORNIA,PPL70217063YU,FANDCROLLA,DA1998ANOPTIMALSELFTUNINGCONTROLLERFORACTIVESUSPENSION,VEHICLESYSTEMDYNAMICS,VOL29,PP51654ZADEH,A,FAHIM,A,ANDELGINDY,M1997NEURALNETWORKSANDFUZZYLOGICAPPLICATIONSTOVEHICLESYSTEM,INTERNATIONALJOURNALOFVEHICLEDESIGN,VOL182,PP1321935WUWEICHEN,JAMESKMILLSANDLEWU,2003NEUROFUZZYANDFUZZYCONTROLOFAUTOMOTIVESEMIACTIVESUSPENSIONS,INTERNATIONALJOURNALOFVEHICLEAUTONOMOUSSYSTEMS,VOL12,PP2222361799外文翻译专业机械设计制造及其自动化学生姓名周祥班级B机制034学号0310110215指导教师吕红明1外文资料名称汽车主动悬架系统的神经网络控制运算法则的研究外文资料出处INTERNATIONALCONFERENCEONNEURALNETWORKSANDBRAIN,2005附件1外文资料翻译译文2外文原文指导教师评语签名年月日2汽车主动悬架系统的神经网络控制运算法则的研究LJFU,JGCAO重庆工学院车辆工程系中国重庆市杨家坪兴盛路4号,400050CRLIAO,BCHEN重庆技术学院车辆工程系中国重庆市杨家坪兴盛路4号,400050EMAILFLJCQITEDUCN周祥译摘要为适应不同路面状况和汽车运行状况,半可控悬架由从动弹簧和活动减振器组成。由于主动悬架结构复杂并且消极悬架无法满足各种路面条件和汽车运行状态的要求,因此半可控悬架系统是目前最常用的悬架系统。本文将着重介绍自适应神经控制的汽车悬架循环神经网络模拟控制器。悬架系统神经网络不同于汽车悬架的动态参数,并且还能够为神经自动调节控制器提供学习信号,为了检验控制结果,在DSP微处理系统基础上为中巴安装液压减振器和多维控制系统,并在各种速度和路面上进行实验将此控制结果和开环消极悬架系统进行比较,结果表明神经网络控制运算在减少微型客车振动方面表现的非常良好。1概述汽车悬架系统的主要功用是支撑车身的重量,并且使汽车稳定有效的进行转向操纵控制,同时有效的分离路面波动对车身的影响。不同的需要导致设计的要求不同,半自动悬架由从动弹簧和需要克服不同路面状况和汽车运行条件的阻尼离的自动减振器组成。由于主动悬架结构复杂而传统的消极式悬架无法满足不同路面状况和汽车运行状况的要求。因此,半自动悬架是目前最常用的悬架系统。半自动悬架系统的优点是带有液压减振使车身在低动力情况下振动降低。目前,许多控制系统是为半自动悬架系统而开发的。从KARNOOPP的SKYHOOK方法开始。这个方法主要是使缓冲器承受一定的力的作用,而这个力是与汽车全速时悬架上的质量成一定比例的。许多调查都是用一维模型,它可以推导出模糊的控制点和控制运算法则。如LQG和活跃控制2,3。由于汽车悬架固有非线性特性,导致这种控制方法不能充分发挥半自动悬架的功用。为充分利用悬架系统的非线性功用。如模糊逻辑控制。神经网络控制和模糊神经控制等智能化控制方法近来都已被科研人员用于非线性悬架系统控制4,5。本文,一种神经自适应控制控制器被用于控制汽车悬架神经网络和瞬边的MR减振器的循环振动。控制器的结构设计和控制运算法则将在第2部分进行详细叙述。悬架的循环神经网络动态模拟在第3部分进行介绍控制系统实验在第4部分,第5部分是总结。31汽车悬架的多维自调节控制法则神经模糊控制系统将在本文进行介绍,由图1可知,它是由模糊神经网络和神经网络模型构成的微型客车悬架。神经网络模糊控制即自适应控制,它有学习和控制的功能。它的循环神经网络功用是用来鉴别中巴车悬架的模拟参数。图1中的YT和YDT分别是系统实际输出和系统理想输出。XLT是系统实际输出和理想输出之间的误差。X2T是系统实际输出和理想输出的误差率XLT和X2T定义如下XITETYTYDT1X2TETET1ET2图1悬架神经网络控制系统的结构网络控制系统整体集的定义分别如下E,E,E,E,U,U神经模糊控制器有四层神经元。第一层和第二层和与模糊法则相一致。第三层与推理相一致,而第四层与模糊法则相一致。,和的集合分别分成7个子集,集的组成分别如下X1NB,NM,NS,ZE,PS,PM,PBX2NB,NM,NS,ZE,PS,PM,PBUNB,NM,NS,ZE,PS,PM,PB本文,将用高斯函数解决模糊集,和模糊集的组成,其函数的第一如下4图2自动悬架神经网络控制器简图,由图2可知,输入/输出如下1和和都是神经网络的输入部分。是其重量,是其输出部分,都是高斯函数的重要值。神经网络控制器的学习法则是以斜率误差信号逆向传递方法为基础的。误差逆向传递方法通过使函数5损失降至最低自动调节重量。3悬架循环神经网络动态模拟法则悬架神经网络设计用于将实际输出量通过第三层神经网近似反馈给潜在的循环层,结构如图3所示。其性能是使循环神经网络能够自动获知周围环境并且据此提高其重量自动适应作用循环神经网络输入信号和和潜在层的逻辑反馈循环神经的输出量的总输出量对等于神经。图3悬架系统神经网络模拟简图。5是循环神经网络的负荷,是潜在层逻辑循环反馈神经的输出神经量,分别是输入神经量和反馈神经量。激活函数是输入函数和输出函数的线性函数,潜在层神经的激活是S形的函数。它的反函数通过误差信号定义如下是误差能量的瞬时值神经元的突出质量一步一步连续的自动调节直至系统达到稳定状态,即突出质量基本上稳定。从式1,2和3可知从4,5和6分析和分别推导出循环分子式。6突出质量可以由下式计算得到是速率参数,详细分析循环算法获得速率参数值是相当复杂的。根据式13得,循环神经网络质量矢量能够自动调节。函数如下,其变值经过T时间可以定义为我们通过式13和式14可以知道误差信号如下函数增量经过T时间可以定义为4路面测试结果分析神经控制运算的正确性的证明,
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:前麦弗逊独立悬架毕业设计(全套含CAD及三维图纸优秀)
链接地址:https://www.renrendoc.com/p-7650688.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!