会员注册 | 登录 | 微信快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文资料-- Glioma Tissue Modeling by Combing the Information of MRI and in vivo Multivoxel MRS.PDF外文资料-- Glioma Tissue Modeling by Combing the Information of MRI and in vivo Multivoxel MRS.PDF -- 1 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

GliomaTissueModelingbyCombingtheInformationofMRIandinvivoMultivoxelMRSWeibeiDOU,AoyanDONG,PingCHITsinghuaNationalLaboratoryforInformationScienceandTechnologyDept.ofElectronicEngineering,TsinghuaUniversity,Beijing,100084,P.R.Chinaemaildouwbtsinghua.edu.cnShaowuLINeuroimagingCenterofTiantanHospitalCapitalMedicalUniversity,Beijing,P.R.ChinaJeanMarcCONSTANSUnitédIRM,EA3916,CHRUCaen,FranceAbstractThispaperpresentsagliomamodelizationmethodandaregressionlikemodeltocreateagraduallygliomaimageGlioIm.Multimodalsignal,imagesofmagneticresonanceimagingMRIandinvivomultivoxelMRspectroscopyMRSarecombinedbytheregressionlikemodelwithspatialresolutionregistration.ThismodelingmethodconsistsoffeaturemodelsofgliomasuchasthesignalintensityofMRimageandthemetabolitechangesofMRS,thecorrelationmodelnotedasmetabolitesratioMetaRandthecombinedregressionlikemodel.TheestimatedGlioImincludesbothbrainstructureandgliomagradeinformation.Anonlinearmodelisproposedandvalidatedinthispaper.ThetestingdataisacquiredbySiemensTrioTim3TandSyngoMRB15atBeijingTiantanhospitalofChina.TheMRSofthreegliomapatients,twoaffectedbyastrocytomaandonebyglioma,andthechemicalshiftimagingCSIreferenceT2imageswereconsideredinourvalidationexperiment.TheresultingGlioImsarecomparedwithgroundtruthprovidedbyneuroradiologistsofTiantanandverifiedwiththeirpathologyreport.Theyreportthatourmethodandmodelareveryefficient.KeywordsMRSpectroscopybraingliomachemicalshiftimagingMRIimagemodelingcombinationI.INTRODUCTIONTodiagnosebraintissueabnormalities,liketumor,itsnecessarytousemultispectralmagneticresonanceimagesMRIs,suchasT1weight,T2weight,Gadolinium,FLAIRetcinordertofindsomeoftumorspropertiessuchassize,position,sort,andrelationshipwithothertissues,etc...Butthetumortypeandgradeareusuallydiagnosedfromhistopathologicalexaminationofasurgicalspecimen.However,Hydrogen11HmagneticresonancespectroscopyMRSisanoninvasiveMRtechniquethatprovidesbiochemicalinformationofmetabolites.Themajorbiochemicalcharacteristicscannoninvasivelyprovideusefulinformationonbraintumortypeandgrade1.Inmanystudies,invivo1HMRShasbeenpresentedfordeterminingthetypeandgradeoftumors123.SinceinvivoMRSmeasurementsandanalysisaredependentontheacquisitiontechnicalthatcompromisethespatialresolutionandaccuracyforresultingmetabolitevalues4,metabolicchangeswithdiseaseisfrequentlysubtleanddiffuse.Furthermore,bychemicalshiftimagingCSItechnique,themetaboliteimagessocalledMRspectroscopicimagingMRSIcanbecreatedbymultivoxelMRSinformation,butitisnotvisuallyinterpretableinthesenseofastructuralMRI4.Sothat,forthetumortissueclassification,itisimportantthatMRSIiscombinedwithMRItoestimatethevariationofmetabolitesandtoyieldmuchinformationregardingtissue.Duringmorethanadecade,automaticbraintumorclassificationbyMRShasbeendeveloped5,butthemorecleardefinitionofbraintumortypeandgrademaybeobtainedbycombinationofMRSIandMRI5.AtechniquetodifferentiateglioblastomafrommetastasislesionsbyusingMRIandMRSdatahasbeenpublishedin6.Wangetal.describedaclassificationofbraintumorsbyusingfeaturesselectionandfuzzyconnectednessin7,thesefeaturesareextractedfromMRIandMRSdata.TherearetwodifficultiesforcombingMRSIdataandMRIdatafirstly,thesedataarefromdifferentmodalities,sotheyarenotinthesamespatialresolution,verylowspatialresolutioninvoxelforMRSIandhighspatialresolutioninpixelforMRI.Secondly,oneMRimagecorrespondstothedistributionofalltissues,ortissuestructure.ButoneMRSimageisaprojectionimagewhichcorrespondstoonemetaboliteorratiobetweenseveralmetabolites.SothedifferentmetabolitevaluesmakevariationMRSimages,justlikethemappingofmetabolitedistributionsbyMRSIpresentedin8.ThequestionforapplicationishowtocombinetheseMRSimagesandMRimagestogiveanautomatictissueclassificationresult.ThekeypointofthecombinationishowtomodelthemetabolitedistributionfromMRS,whichcorrespondstoinformationfromMRimages.Forautomaticdescriptionofbraintumortypeandgrade,weproposeamodelizationmethodofgliomatissuesbycombingtheinformation,fromMRimagesandMulitivoxelMRSdata.ItcancreateaMRSweightedMRimageautomaticallywhichkeepsthehighspatialresolutionlikeMRimageandthegreylevelscorrespondtothedeteriorationofbraintissues.ThesecondpartofthispaperintroducesthegliomatissuefeaturesbothinMRSvaluesandinMRimages.Thecombinationmodelingofthetwotypesofinformationispresentedinthethirdsectionanditsvalidationisshowninthefourthsection.Theconclusionaboutourresearchisgivenattheendofthispaper.ThisworkisfundedbyTsinghuaNationalLaboratoryforInformationScienceandTechnology(TNList)CrossdisciplineFoundation9781424447138/10/25.00©2010IEEEII.FEATURESMODELOFGLIOMATISSUEFollowingtheresearchofdiagnosingbraintumorbyMRimagesandMRS,wecansummarizetwotypesofcharacteristicsofglioma,oneisthesignalintensityofT1weightandT2weightimages,andtheotheroneisthechemicalshiftvaluesofmetabolitespresentedbyMRSdata.A.SignalIntensityCharacteristicsofMRimagesWehaveproposedsomefuzzymodelingmethodsofdifferenttumorouscerebraltissuesonMRimagesbasedonfusionoftissuefeaturesin91011.TableIdescribesthecharacteristicsofbraintissuesbycreatingagradualityofsignalintensityasafunctionofdifferenttissuesandsequencesofMRI10,whereCSFistheabbreviationofcerebralspinalfluid,GMtheabbreviationofgraymatter,andWMwhitematter.IntableI,theSeqsisshortforSequencesofMRI.Thesymbolpresentsahypersignalitmeansthatthesignalintensityisveryhighandtheimageisverybright.Thesymbolpresentsahyposignal,theintensityisverylowandtheimageisverydark.Thesymbolmeansthatthesignalintensityishigherthanhyposignal,andmeansthatitisdarkerthanhypersignal.meansthatthesignalintensityislowerthanthehyposignal,andmeansthatitisbrighterthanthehypersignal.AnexampleofT1weightedimagenotedasT1,andT2weightedimagenotedasT2areshowninFig.1TABLEI.SIGNALINTENSITYCHARACTERISTICSOFBRAINTISSUESONMRIMAGESSequencesGradualityofsignalintensityCSFGMWMGliomaEdemaNecrosisT1T2abFigure1.OriginalMRIimagesaT1image,bT2imageB.MetaboliteChangesFeaturesofMRSTABLEII.SCALARDESCRIPTIONOFMETABOLITEVALUESMetabolitelevelabsentverylowlittlelowlowmediumlittlehighhighveryhighabbreviationAVLLLLMLHHVHThereareonlyseveralmetaboliteswhichcorrespondtogliomaamongalargenumberofmetabolitesofhumanbody.NacetylasparateNAA,creatineCr,cholineCho,myoinositolmI,lactateLacandfreelipidsLip.ThevariationofthesemetabolitescanbeorderedinascalarformasshowninTableII,wherethescalarorderisabsent,verylow,littlelow,low,medium,littlehigh,high,veryhigh,whichcorrespondtometabolitevaluesfrom0tomaximum.ThemetabolicchangeswithbraintissuesareshowninTableIII.Itisconcludedfrom121314.TABLEIII.METABOLITECHANGESFEATURESOFBRAINTISSUESONMRSMetabolitevariationofmetabolitescorrespondingwithbraintissuesCSFGMWMGliomaEdemaNecrosisNAAVLVHHL/VLMAChoAMLHH/VHLHACrLHHM/LLLAmILMLHHLH/MALipAVLLHLVHLacLHVLAH/LHLHHIII.MODELIZATIONBYCOMBININGMRSWITHMRITheaimofthismodelizationstudyistocreateagraduallygliomaimage,notedasGlioIm,whichincludesbrainstructureandgliomagradeinformation.IfthegliomagradeinformationisconsideredasacorrelationfunctionbetweenMRsignalandpathologicalchanges.WeproposearegressionlikemodeltoestimatetheGlioImfromMRimagesnotedasMRImandmetabolitechanges.A.CorrelationmodelOneofthecorrelationfunctionsismetabolitechangescorrespondingtoglioma.BycombiningtheinformationinTableIandTableIII,wecanrebuildaconclusionTableIVaboutgliomacharacteristicswithrelativequantizationofmetabolitesofTableIII.Therelativequantizationisratiosbetweenmetabolitevalues,suchastheratioofChoandNAAnotedasCho/NAAinTableIV,itiscalledmetabolitesratioMetaR,andTableIViscalledcorrelationmodelinthispaper.TABLEIV.METABOLITESRATIOCHARACTERISTICOFBRAINTISSUESMetabolitevariationofmetabolitescorrespondingwithbraintissuesCSFGMWMGliomaEdemaNecrosisCho/NAAAVLLVHHACho/CrALLHHAmI/CrMLMHHALip/CrAVLVLHMVHLac/CrLHVLAHHHTheMetaRcharacteristicsofglioma,edemaandnecrosisareenhancedandthenormaltissuesarereduced.TheyassortwithsignalintensitycharacteristicsofT2weightedimagedescribedinTableI.B.RegressionlikemodelwithspatialresolutionregistrationNormaly,MetaRisafunctionofvoxeldecidedbyCSIsliceshowninFig.2.Sothat,itisatwodimensionalfunctionnotedasMetaRi,v,whereiisindexofmetaboliteandvistheindexofvoxelcorrespondedwithCSIslice.Asthesamereason,GlioImcanbecreatedasathreedimensionalfunction,notedasGlioImv,p,g,wherepisindexofpixelcorrespondedwithMRIm,andgisthegreylevelofselectedMRimageandcorrespondstop.Infact,MRImisatwodimensionalfunctionnotedasMRImp,g,whereandg∈G,{}1,2,,,,,...TTPDFLAIRGadoDiffusionPerfusionGConsidertwovariables,MRImandGlioIm,MRImisacertainimagelikeT2,GlioImisanestimatedimage.ThecorrelationmodelMetaRcanbeconsideredasonerelationshipbetweenthem.SotheregressionlikemodelforestimatingGlioImfromMRImcanbecreatedasequation1.Im,,,Im,GliovpgMetaRivMRpgΘ1WhereΘnotesanecessaryoperator,andpcorrespondstov.Ifalinearregressiveisnecessary,equation1canberewrittenas2Im,,,Im,,GliovpgMetaRivMRpgMetaRjv2whereiandjindicatedifferentmetabolites.C.NonlinearRegressionlikemodelToavoidmosaiceffects,weproposeanonlinearregressionlikemodelwithspatialresolutionregistrationin3.Im,Im,,exp,.MRpgGliovpgMetaRivMetaRjvT⎡⎤⎢⎥⎣⎦3whereTisatimeconstantcorrespondingtoMRImp,g.AccordingtothecorrelationmodelofTableIV,theLip/CrandLac/Crarespecificfeatureswhicharedependentonthetumorgrade.Sothat,inthemodelofequation2,wehave{},/,/,//,/ijMetaRChoNaaChoCrmICrLipCrLacCr∈∈IJIJIJ∪,BecausetheJofMetaRisthegrademarker,ittakesaninterceptiveroletomakeadifferentgreylevelfromothervoxelsandindicatesavariablegrade.IV.VALIDATIONANDRESULTA.MaterielThreegliomapatients,twoaffectedbyastrocytomaandonebyglioma,wereconsideredinourvalidationexperiment.ThetestingdataareadatapairconsistedofCSIrawdataandtheirreferenceimages.ThesedatawereacquiredwithSTEAMsequenceatBeijingTiantanhospitalChina,bySiemensMRTrioTim3TandsyngoMRB15.TheMRSrawdataaremeasuredbycsi_st/90protocolwithTR3000/TE72/TM6.T2weightedimagesaremeasuredbyt2_tse_traprotocolwithTR4500/TE80.TwoexamplesofthesedataareshowninFig.2.Thenonlinearregressionlikemodel3isvalidatedbyourtestingexperimentation.MRImof3isT2with0.570.57mm2pixelsizeand5mmslicethickness.ThetimeconstantTin3isindicatedbyhistogrampeakofCSIreferenceimagesinT2.ThemetabolitevaluesarecalculatedbyTHUMRSv0.5developedbyourresearchgroupandpublishedin15.TheCSIslicesnotethattheMRSvoxelsizeis141420mm3.abFigure2.ExampleofCSIslicedownleftwithitsreferenceimagesandmetabolitesvaluescorrespondedwithvoxelsize141420mm3.afromanastrocytomapatient,masculine30yearsold.bfromagliomapatient,feminie48yearsold.B.ResultThevalidationresultscorrespondedtoVOIareshowninFig.3fandFig.4f.Thehighersignalorbrighterpixelinfmarksgreaterpossibilityofgliomaorhighertumorgrade.InFig.3and4,aaretheoriginalT2weightedimageswiththesignofVOI,barethehandlabelresultsasGroundtruthfromneuroradiologistsofTiantan,careonepartofainVOI,daretheresultsofexponentialcomponentofequation3whichpresentsthecombinedinformationofT2andCho/Naa,earetheresultsofsuperpositionofT2andLipLc/Cr.aT2VOIbGroundtruthcOriginalT2inVOIdMetaRCho/NaaeMetaRLacLip/CrfResultingGlioImFigure3.ResultingGlioImfofthepatientaffectedbyastrocytomaC.DiscussionThebrighterpixelinFig.3dorfdenotesnotonlyhigherCho/NaabutalsobrighterT2.BecauseMetaRvaluesinTableIVareconsistentwiththeintensityofT2.Soitmayindicategliomaandhighergraderegion.ThedarkerpixelspresentlowerCho/NaaanddarkerT2,mayindicatenormaltissues.Thentherearesomebrighterpixelsindandf,theyarenotconnectedwithgliomaregion,theyareCSFperhaps,becauseCSFisbrighterinT2.WecanremovethemsimplybyusingregisteredFLAIRimage.TheregisteredGadoliniumimagealsocanbeusedtoindicateenhancedpixelsorregion.aT2VOIbGroundtruthcoriginalT2inVOIdMetaRCho/NaaeMetaRLacLip/CrfResultingGlioImFigure4.ResultingGlioImfofthepatientaffectedbygliomaBecauseamongthe5metaboliteratiosinTableIV,onlythreepresentevidentchanges,likeCho/Naa,Lip/CrandLac/Cr.Theothertworatiosarenotutilizedinourexperiment.ItispossibletouseotherMRIsequencessuchasT1,butitisnecessaryeithertotransformgreylevelsofimageortoinversethevalueofMetaR.Asmentionedin16,animageresultedfromfusionofgliomafeaturesextractedfrommultimodalitysignal,aspresentedin9,canalsobeusedasMRIminthisgliomamodel.V.CONCLUSIONAdvantagesofMRItechniqueprovidemorepossibilitywithmultisequencesandmultimodalitiessignaltorealizethetumordiagnosis,treatmentandprognosis.Butitisheavyworkforprocessingallsignalstodoafinaldecision.SoAutomaticquantificationandcombinationanalysisisveryimportantandthemodelingoftumorfeaturesisthekeypointforperformingit.Wehaveproposedaframeworkoffuzzyfeaturesfusionsystemin16andpublishedsomeresearchresultsaboutfusingthetumorfeaturesextractedfromT1,T2andprotondensityimages9.Inthispaper,wepresenttheprimarystudyaboutthetumorfeaturescombinationofMRSandMRimages.Theproposedmodelingmethodandnonlinearregressionlikemodelarevalidforseparatingthebraintissuesespeciallyglioma.Itwillbeusedfortumortissuesclassification,segmentation,tumortypeandgradedecision,etc.Thereisstillmuchworktoimprovethismodelandtointegrateitwiththefusionsysteminthefuture.REFERENCES1HoweFA,BartonSJ,CudlipSA,StubbsM,SaundersDE,MurphyM,WilkinsP,OpstadKS,DoyleVL,McLeanMA,BellBA,GriffithsJR.Metabolicprofilesofhumanbraintumorsusingquantitativeinvivo1Hmagneticresonancespectroscopy.MagnResonMed.2003Feb49222332.2PreulMC,CaramanosZ,CollinsDL,VillemureJG,LeblancR,OlivierA,PokrupaR,ArnoldD.Accurate,noninvasivediagnosisofhumanbraintumorsbyusingprotonmagneticresonancespectroscopy.NatMed19962323–325.3MajósC,AguileraC,CosM,CaminsA,CandiotaAP,DelgadoGoñiT,SamitierA,CastañerS,SánchezJJ,MatoD,AcebesJJ,ArúsC.InvivoprotonmagneticresonancespectroscopyofintraventriculartumoursofthebrainEurRadiol.2009Aug198204959.4A.A.Maudsley,C.Domenig,V.Govind,A.Darkazanli,C.Studholme,K.Arheart,C.Bloomer,MappingofbrainmetabolitedistributionsbyvolumetricprotonMRspectroscopicimagingMRSIMagneticResonnanceinMedicin615485592009.5GarciaGomezJ.,LutsJ.,JuliaSapeM.,KrooshofP.,TortajadaS.,VicenteJ.,MelssenW.,FusterGarciaE.,OlierI.,PostmaG.,MonleonD.,MorenoTorresA.,PujolJ.,CandiotaA.P.,MartinezBisbalM.C.,SuykensJ.A.K.,BuydensL.,CeldaB.,VanHuffelS.,ArusC.,RoblesM.,Multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy,MagneticResonanceMaterialsinPhysics,BiologyandMedicine,vol.22,Feb.2009,pp.518.6LutsJ.,LaudadioT.,MartinezBisbalM.C.,VanCauterS.,MollaE.,PiquerJ.,SuykensJ.A.K.,HimmelreichU.,CeldaB.,VanHuffelS.,DifferentiationbetweenbrainmetastasesandglioblastomamultiformebasedonMRI,MRSandMRSI,inProc.ofthe22ndIEEEInternationalSymposiumonComputerBasedMedicalSystemsCBMS,Albuquerque,NewMexico,Aug.2009,pp.18.7QiangWang,EiriniKaramaniLiacouras,EricksonMiranda,UdayS.Kanamalla,andVasileiosMegalooikonomou,ClassificationofbraintumorsusingMRIandMRSdata,Proc.SPIE6514,2007pp.65140S18.8A.A.Maudsley,C.Domenig,V.Govind,A.Darkazanli,C.Studholme,K.Arheart,C.Bloomer,MappingofbrainmetabolitedistributionsbyvolumetricprotonMRspectroscopicimagingMRSI,Magneticresonanceinmedicinevol.61,2009,pp.548559.9W.Dou,S.Ruan,Y.Chen,D.Bloyet,andJ.M.Constans,AframeworkoffuzzyinformationfusionforthesegmentationofbraintumortissuesonMRimagesImageandVisionComputing,vol.25,2007,pp.164–171.10WeibeiDOU,QianWU,YanpingCHEN,SuRUAN,andJeanMarcCONSTANS,FuzzymodellingofdifferenttumorouscerebraltissuesonMRIimagesbasedonfusionoffeatureinformation,Proceedingsof27thAnnualInternationalConferenceoftheIEEEEngineeringinMedicineandBiologySocietyEMBC2005,14September2005inShanghai,China.11WeibeiDOU,YuanREN,YanpingCHEN,SuRUAN,DanielBLOYET,andJeanMarcCONSTANS,HistogrambasedGenerationMethodofMembershipFunctionforExtractingFeaturesofBrainTissuesonMRIImages,LNAI2005Vol.3613,pp.189194.12LaraA.Brandao,RomeuC.Domingues,MRspectroscopyofthebrain,LivrariaeEditoraRevinterLtda.200313DenisHoa,Metabolitesexploredin1HMRS,http//www.imaios.com/en/eCourses/eMRI/MagneticResonanceSpectroscopyMRS14JeanMarcConstans,Variabilitysourcesinsinglevoxel1HMRSquantizationinbrain,sciencethesisofUniversitédeCaen/BasseNormandi,UFRdeMédecine,spécialitédeRecherchedinique,innovationtechnologie,santépublique,2006.15WeibeiDOU,ShuaiWANG,ShaowuLI,JeanMarcCONSTANS,AutomaticDataProcessingtoRelativeQuantitativeAnalysisof1HMRSpectroscopyofBrain,inproceedingsofThe3rdinternationalconferenceonbioinformaticsandbiomedicalengineeringiCBBE2009,June1116,2009,Beijing,China16WeibeiDou,SegmentationdimagesmultispectralesbaséesurlafusiondinformationsapplicationauximagesIRMPhD.Thesis,lUNIVERSITEdeCAEN,soutenule29septembre2006.
编号:201311062134463283    大小:1.62MB    格式:PDF    上传时间:2013-11-06
  【编辑】
1
关 键 词:
外文资料 外文翻译
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

5.0
 
(3人评价)
浏览:117次
美女来了上传于2013-11-06

官方联系方式

客服手机:17625900360   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

外文资料   外文翻译  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5