外文资料--Machine learning and games.pdf外文资料--Machine learning and games.pdf

收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

MACHLEARN200663211–215DOI101007/S109940068919XGUESTEDITORIALMACHINELEARNINGANDGAMESMICHAELBOWLINGJOHANNESFURNKRANZTHOREGRAEPELRONMUSICKPUBLISHEDONLINE10MAY2006SPRINGERSCIENCEBUSINESSMEDIA,LLC2006THEHISTORYOFTHEINTERACTIONOFMACHINELEARNINGANDCOMPUTERGAMEPLAYINGGOESBACKTOTHEEARLIESTDAYSOFARTIFICIALINTELLIGENCE,WHENARTHURSAMUELWORKEDONHISFAMOUSCHECKERPLAYINGPROGRAM,PIONEERINGMANYMACHINELEARNINGANDGAMEPLAYINGTECHNIQUESSAMUEL,1959,1967SINCETHEN,BOTHFIELDSHAVEADVANCEDCONSIDERABLY,ANDRESEARCHINTHEINTERSECTIONOFTHETWOCANBEFOUNDREGULARLYINCONFERENCESINTHEIRRESPECTIVEFIELDSANDINGENERALAICONFERENCESFORSURVEYSOFTHEFIELDWEREFERTOGINSBERG1998,SCHAEFFER2000,FURNKRANZ2001;EDITEDVOLUMESHAVEBEENCOMPILEDBYSCHAEFFERANDVANDENHERIK2002ANDBYFURNKRANZANDKUBAT2001INRECENTYEARS,THECOMPUTERGAMESINDUSTRYHASDISCOVEREDAIASANECESSARYINGREDIENTTOMAKEGAMESMOREENTERTAININGANDCHALLENGINGAND,VICEVERSA,AIHASDISCOVEREDCOMPUTERGAMESASANINTERESTINGANDREWARDINGAPPLICATIONAREATHEINDUSTRY’SPERSPECTIVEISWITNESSEDBYAPLETHORAOFRECENTBOOKSONGENTLEINTRODUCTIONSTOAITECHNIQUESFORGAMEPROGRAMMERSCOLLINS,2002;CHAMPANARD,2003;BOURGSEEMANN,2004;SCHWAB,2004ORASERIESOFEDITEDCOLLECTIONSOFARTICLESRABIN,2002,2003,2006AIRESEARCHONCOMPUTERGAMESBEGANTOFOLLOWDEVELOPMENTSINTHEGAMESINDUSTRYEARLYON,BUTSINCEJOHNLAIRD’SKEYNOTEADDRESSATTHEAAAI2000CONFERENCE,INWHICHHEADVOCATEDINTERACTIVECOMPUTERGAMESASACHALLENGINGANDREWARDINGAPPLICATIONAREAFORAILAIRDVANLENT,2001,NUMEROUSWORKSHOPSFUORKIN,2004;AHAETAL,2005,CONFERENCES,ANDSPECIALISSUESOFJOURNALSFORBUSLAIRD,2002DEMONSTRATETHEGROWINGIMPORTANCEOFGAMEPLAYINGAPPLICATIONSFORARTIFICIALINTELLIGENCEMBOWLINGENVELOPEBACKEMAILBOWLINGCSUALBERTACAJFURNKRANZEMAILFUERNKRANZINFORMATIKTUDARMSTADTDETGRAEPELEMAILTHOREGMICROSOFTCOMRMUSICKEMAILMUSICKIKUNICOMSPRINGER212MACHLEARN200663211–215GAMES,WHETHERCREATEDFORENTERTAINMENT,SIMULATION,OREDUCATION,PROVIDEGREATOPPORTUNITIESFORMACHINELEARNINGTHEVARIETYOFPOSSIBLEVIRTUALWORLDSANDTHESUBSEQUENTMLRELEVANTPROBLEMSPOSEDFORTHEAGENTSINTHOSEWORLDSISLIMITEDONLYBYTHEIMAGINATIONFURTHERMORE,NOTONLYISTHEGAMESINDUSTRYLARGEANDGROWINGHAVINGSURPASSEDTHEMOVIEINDUSTRYINREVENUEAFEWYEARSBACK,BUTITISFACEDWITHATREMENDOUSDEMANDFORNOVELTYTHATITSTRUGGLESTOPROVIDEAGAINSTTHISBACKDROP,MACHINELEARNINGDRIVENSUCCESSESWOULDDRAWHIGHPROFILEATTENTIONTOTHEFIELDSURPRISINGLYHOWEVER,THEMORECOMMERCIALTHEGAMETODATE,THELESSIMPACTLEARNINGHASMADETHISISQUITEUNLIKEOTHERGREATMATCHESBETWEENAPPLICATIONANDDATADRIVENANALYTICSSUCHASDATAMININGANDOLAPTOPICSOFPARTICULARIMPORTANCEFORSUCCESSFULGAMEAPPLICATIONSINCLUDELEARNINGHOWTOPLAYTHEGAMEWELL,PLAYERMODELING,ADAPTIVITY,MODELINTERPRETATIONANDOFCOURSEPERFORMANCETHESENEEDSCANBERECASTASACALLFORNEWPRACTICALANDTHEORETICALTOOLSTOHELPWITHLEARNINGTOPLAYTHEGAMEGAMEWORLDSPROVIDEEXCELLENTTESTBEDSFORINVESTIGATINGTHEPOTENTIALTOIMPROVEAGENTS’CAPABILITIESVIALEARNINGTHEENVIRONMENTCANBECONSTRUCTEDWITHVARYINGCHARACTERISTICS,FROMDETERMINISTICANDDISCRETEASINCLASSICALBOARDANDCARDGAMESTONONDETERMINISTICANDCONTINUOUSASINACTIONCOMPUTERGAMESLEARNINGALGORITHMSFORSUCHTASKSHAVEBEENSTUDIEDQUITETHOROUGHLYPROBABLYTHEBESTKNOWNINSTANCEOFALEARNINGGAMEPLAYINGAGENTISTHEBACKGAMMONPLAYINGPROGRAMTDGAMMONTESAURO,1995LEARNINGABOUTPLAYERSOPPONENTMODELING,PARTNERMODELING,TEAMMODELING,ANDMULTIPLETEAMMODELINGAREFASCINATING,INTERDEPENDENTANDLARGELYUNSOLVEDCHALLENGESTHATAIMATIMPROVINGPLAYBYTRYINGTODISCOVERANDEXPLOITTHEPLANS,STRENGTHS,ANDWEAKNESSESOFAPLAYER’SOPPONENTSAND/ORPARTNERSONEOFTHEGRANDCHALLENGESINTHISLINEOFWORKAREGAMESLIKEPOKER,WHEREOPPONENTMODELINGISCRUCIALTOIMPROVEOVERGAMETHEORETICALLYOPTIMALPLAYBILLINGSETAL,2002BEHAVIORCAPTUREOFPLAYERSCREATINGACONVINCINGAVATARBASEDONAPLAYER’SINGAMEBEHAVIORISANINTERESTINGANDCHALLENGINGSUPERVISEDLEARNINGTASKFOREXAMPLE,INMASSIVEMULTIPLAYERONLINEROLEPLAYINGGAMESMMORGSANAVATARTHATISTRAINEDTOSIMULATEAUSER’SGAMEPLAYINGBEHAVIORCOULDTAKEHISCREATOR’SPLACEATTIMESWHENTHEHUMANPLAYERCANNOTATTENDTOHISGAMECHARACTERFIRSTSTEPSINTHISAREAHAVEBEENMADEINCOMMERCIALVIDEOGAMESSUCHASFORZAMOTORSPORTXBOXWHERETHEPLAYERCANTRAINA“DRIVATAR”THATLEARNSTOGOAROUNDTHETRACKINTHESTYLEOFTHEPLAYERBYOBSERVINGANDLEARNINGFROMTHEDRIVINGSTYLEOFTHATPLAYERANDGENERALIZINGTONEWTRACKSANDCARSMODELSELECTIONANDSTABILITYONLINESETTINGSLEADTOWHATISEFFECTIVELYTHEUNSUPERVISEDCONSTRUCTIONOFMODELSBYSUPERVISEDALGORITHMSMETHODSFORBIASINGTHEPROPOSEDMODELSPACEWITHOUTSIGNIFICANTLOSSOFPREDICTIVEPOWERARECRITICALNOTJUSTFORLEARNINGEFFICIENCY,BUTINTERPRETIVEABILITYANDENDUSERCONFIDENCEOPTIMIZINGFORADAPTIVITYBUILDINGOPPONENTSTHATCANJUSTBARELYLOSEININTERESTINGWAYSISJUSTASIMPORTANTFORTHEGAMEWORLDASCREATINGWORLDCLASSOPPONENTSTHISREQUIRESBUILDINGHIGHLYADAPTIVEMODELSTHATCANSUBSTANTIVELYPERSONALIZETOADVERSARIESORPARTNERSWITHAWIDERANGEOFCOMPETENCEANDRAPIDSHIFTSINPLAYSTYLEBYINTRODUCINGAVERYDIFFERENTSETOFUPDATEANDOPTIMIZATIONCRITERIAFORLEARNERS,AWEALTHOFNEWRESEARCHTARGETSARECREATEDMODELINTERPRETATION“WHAT’SMYNEXTMOVE”ISNOTTHEONLYQUERYDESIREDOFMODELSINAGAME,BUTITISCERTAINLYTHEONEWHICHGETSTHEMOSTATTENTIONCREATINGTHEILLUSIONOFINTELLIGENCEREQUIRES“PAINTINGAPICTURE”OFANAGENT’STHINKINGPROCESSTHEABILITYTODESCRIBETHECURRENTSTATEOFAMODELANDTHEPROCESSOFINFERENCEINTHATMODELFROMSPRINGERMACHLEARN200663211–215213DECISIONTODECISIONENABLESQUERIESTHATPROVIDETHEFOUNDATIONFORAHOSTOFSOCIALACTIONSINAGAMESUCHASPREDICTIONS,CONTRACTS,COUNTERFACTUALASSERTIONS,ADVICE,JUSTIFICATION,NEGOTIATION,ANDDEMAGOGUERYTHESECANHAVEASMUCHORMOREINFLUENCEONOUTCOMESASACTUALINGAMEACTIONSPERFORMANCERESOURCEREQUIREMENTSFORUPDATEANDINFERENCEWILLALWAYSBEOFGREATIMPORTANCETHEAIDOESNOTGETTHEBULKOFTHECPUORMEMORY,ANDTHEMACHINESDRIVINGTHEMARKETWILLALWAYSBEUNDERPOWEREDCOMPAREDTOTYPICALDESKTOPSATANYPOINTINTIMETHISSPECIALISSUECONTAINSTHREEARTICLESANDONERESEARCHNOTETHATSPANTHEWIDERANGEOFRESEARCHINTHEINTERSECTIONOFGAMEPLAYINGANDMACHINELEARNINGINTHEFIRSTCONTRIBUTION,ADAPTIVEGAMEAIWITHDYNAMICSCRIPTING,SPRONCKETALTACKLETHEPROBLEMOFADAPTIVITYBYDYNAMICALLYMODIFYINGTHERULESWHICHGOVERNCHARACTERBEHAVIORINGAMETHISPAPERISTARGETEDATTHECOMMERCIALGAMESINDUSTRY,ANDPROVIDESSOMEGOODINSIGHTINTOPROBLEMSFACEDBYTHECREATORSOFTODAY’SROLEPLAYINGGAMESTHEAUTHORSPROPOSEFOURFUNCTIONALANDFOURCOMPUTATIONALREQUIREMENTSFORONLINELEARNINGINGAMESTHEYTHENPROCEEDTOSHOWHOWDYNAMICSCRIPTINGFITSINTOTHOSEREQUIREMENTS,ANDPROVIDEEXPERIMENTALEVIDENCEOFTHEPOTENTIALPROMISEOFTHISAPPROACHDYNAMICSCRIPTINGCANBECHARACTERIZEDASSTOCHASTICOPTIMIZATIONTHEAUTHORSEVALUATEDYNAMICSCRIPTINGONBOTHTHETASKOFPROVIDINGTHETOUGHESTOPPONENTPOSSIBLE,ANDONTHETASKOFDIFFICULTYSCALINGGOODDIFFICULTYSCALINGUNDERPINSWHATMAKESMOSTGAMESFUN,ANDSOLVINGTHISPROBLEMISOFTENVERYCHALLENGINGANDTHESOLUTIONSAREALMOSTALWAYSADHOCTHEAUTHORSPRESENTEXPERIMENTALDATATHATCOMPARESDYNAMICSCRIPTINGTOSTATICOPPONENTSANDTHOSECONTROLLEDBYQLEARNINGANDMONTECARLOTHETESTENVIRONMENTSINCLUDEBOTHSIMULATEDGAMESANDANACTUALCOMMERCIALGAMENEVERWINTERNIGHTS,ANDHELPTOPRESENTAVERYINTERESTINGSTUDYWHICHISSURETOBLAZEAPATHFORFURTHERINTERESTINGRESEARCHTHESECONDPAPER,UNIVERSALPARAMETEROPTIMIZATIONINGAMESBASEDONSPSABYSZEPESVARIANDKOCSIS,CONSIDERSTHEPROBLEMOFOPTIMIZINGPARAMETERSTOIMPROVETHEPERFORMANCEOFPARAMETERIZEDPOLICIESFORGAMEPLAYTHEYCONSIDERTHESIMULTANEOUSPERTURBATIONSTOCHASTICAPPROXIMATIONSPSAMETHODINTRODUCEDBYSPALL1992WHICHISAGENERALGRADIENTFREEOPTIMIZATIONMETHODTHATISAPPLICABLETOAWIDERANGEOFOPTIMIZATIONPROBLEMSTHEAUTHORSDEMONSTRATETHATSPSAISAPPLICABLETOAWIDERANGEOFTYPICALOPTIMIZATIONPROBLEMSINGAMESANDPROPOSESEVERALMETHODSTOENHANCETHEPERFORMANCEOFSPSATHESEENHANCEMENTSINCLUDETHEUSEOFCOMMONRANDOMNUMBERSANDANTITHETICVARIABLES,ACOMBINATIONWITHRPROPANDTHEREUSEOFSAMPLESTHEAPPLICATIONTOGAMESCONSIDERSTHEDOMAINOFLEARNINGTOPLAYOMAHAHILOPOKERWITHTHEIRPOKERPROGRAMMCRAISESPSACOMBINEDWITHTHEIRPROPOSEDENHANCEMENTSLEADSTOPOKERPERFORMANCECOMPETITIVEWITHTDLEARNING,THEMETHODSOSUCCESSFULLYUSEDBYTESAURO1995,FORLEARNINGAWORLDCLASSEVALUATIONFUNCTIONFORBACKGAMMONANDSTILLUSEDINTODAY’SWORLDCLASSBACKGAMMONPROGRAMSSUCHASJELLYFISHANDSNOWIETHETHIRDCONTRIBUTION,LEARNINGTOBIDINBRIDGEBYMARKOVITCHANDAMIT,ADDRESSESTHEPROBLEMOFBIDDINGINTHEGAMEOFBRIDGEWHILERESEARCHINBRIDGEPLAYINGHASPIONEEREDMONTECARLOSEARCHALGORITHMSFORTHEPLAYINGPHASEOFCARDGAMESANDRESULTEDINPROGRAMSOFCONSIDERABLESTRENGTHGINSBERG,1999,THEBIDDINGPHASE,INWHICHTHEGOALTHESOCALLEDCONTRACTOFTHESUBSEQUENTPLAYINGPHASEISDETERMINED,ISSTILLAMAJORWEAKNESSOFEXISTINGBRIDGEPROGRAMSTHISPAPERISABOUTANAPPROACHTHATSUPPORTSTHEDIFFICULTBIDDINGPHASEINTHEGAMEBRIDGEWITHTECHNIQUESFROMMACHINELEARNING,INPARTICULAROPPONENTMODELINGVIATHELEARNINGOFDECISIONNETSANDVIAMODELBASEDMONTECARLOSAMPLINGTOADDRESSTHEPROBLEMOFHIDDENINFORMATIONTHEEVALUATIONCLEARLYESTABLISHESTHATTHESYSTEMIMPROVESWITHLEARNING,ANDITSEEMSTHATTHELEVELOFPLAYACHIEVEDBYTHISPROGRAMSURPASSESTHELEVELSPRINGER214MACHLEARN200663211–215OFTHEBIDDINGMODULEOFCURRENTSTATEOFTHEARTPROGRAMSANDAPPROACHESTHATOFANEXPERTPLAYERFINALLY,SADIKOVANDBRATKOPRESENTARESEARCHNOTEONLEARNINGLONGTERMCHESSSTRATEGIESFROMDATABASESTHEYADDRESSTHEPROBLEMOFKNOWLEDGEDISCOVERYINGAMEDATABASESFORMANYGAMESORSUBGAMESSUCHASCHESSENDGAMES,THEREAREGAMEDATABASESAVAILABLE,WHICHCONTAINPERFECTINFORMATIONABOUTTHEGAMEINTHESENSETHATFOREVERYPOSSIBLEPOSITION,THEGAMETHEORETICOUTCOMEISSTOREDINADATABASEHOWEVER,ALTHOUGHTHESEDATABASESCONTAINALLINFORMATIONTOALLOWPERFECTPLAY,THEYARENOTAMENABLETOHUMANANALYSIS,ANDARETYPICALLYNOTVERYWELLUNDERSTOODFOREXAMPLE,CHESSGRANDMASTERJOHNNUNNANALYZEDSEVERALSIMPLECHESSENDGAMEDATABASESRESULTINGINASERIESOFWIDELYACKNOWLEDGEDENDGAMEBOOKSNUNN,1992,1994B,1995,BUTREADILYADMITTEDTHATHEDOESNOTYETUNDERSTANDALLASPECTSOFTHEDATABASESHEANALYZEDNUNN,1994ATHISPAPERREPORTSONANATTEMPTTOMAKEHEADWAYBYAUTOMATICALLYCONSTRUCTINGPLAYINGSTRATEGIESFROMCHESSENDGAMEDATABASESITDESCRIBESAMETHODFORBREAKINGUPTHEPROBLEMINTODIFFERENTGAMEPHASESFOREACHPHASE,ITISTHENPROPOSEDTOLEARNASEPARATEEVALUATIONFUNCTIONVIALINEARREGRESSIONEXPERIMENTSINTHETHEKINGANDROOKVSKING,ORKINGANDQUEENVSKINGANDROOKENDGAMESSHOWENCOURAGINGRESULTS,BUTALSOILLUSTRATETHEDIFFICULTYOFTHEPROBLEMMACHINELEARNINGHASBEENINSTRUMENTALTODATEINBUILDINGSOMEOFTHEWORLD’SBESTPLAYERSINBACKGAMMONANDHASLEADTOINTERESTINGRESULTSINGAMESLIKECHESSANDGOTOMOVEINTOMAINSTREAMCOMMERCIALGAMES,MACHINELEARNINGRESEARCHHASTOFACEWHATINMA
编号:201311070933563292    类型:共享资源    大小:158.67KB    格式:PDF    上传时间:2013-11-07
  
1
关 键 词:
外文资料 外文翻译
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:外文资料--Machine learning and games.pdf
链接地址:http://www.renrendoc.com/p-93292.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

copyright@ 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5