会员注册 | 登录 | 微信快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

Frictional properties of new developed cold work tool steel for high tensile strength steelforming die.pdfFrictional properties of new developed cold work tool steel for high tensile strength steelforming die.pdf -- 5 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

Wear27120112884–2889ContentslistsavailableatScienceDirectWearjournalhomepagewww.elsevier.com/locate/wearFrictionalpropertiesofnewdevelopedcoldstrengthKunichikaaShimanebaArticleReceivedReceivedAcceptedAvailableonline25June2011KeywordsToolDieGallingAdhesiveStampingSelflubricationsteelexperimentalexcellentSKD111.TheapplicationofhightensilestrengthsteelhereafterabbreviatedasHTSSisbeingabruptlyincreasedtoproducethemorerigidautomobileswithoutincreasingbodyweightsintheworldwideautomobileindustry.Thistrendcomesfromthatautomobilemanufacturerstionthroughdueasfacturerswearofmachinabilityment.astypeandmethodingresistanceandmachinabilityaswellasshowingexcellentperformanceinwidevariousapplicationssuchasforming,pressingandothercoldworkingapplications.Recently,SMAGIChasbeenacceptedinvariousapplicationfieldsofcoldformingprocessesassocalledanecomaterialandespecially,hasanexcellentreputa00431648/doiarerequiredforhigherglobalenvironmentprotecandimprovementofcollisionsafetywhiletheysuppresscostsimprovingfuelconsumptionofautomobiles.However,HTSSismuchmoredifficultmaterialtobeformedtohigherstrengthcomparedtocurrentusedmaterialssuchplainstructuralsteels.TheaboverequiresautomobilemanutogetnewdiematerialstoensuredurabilityintermsofresistanceandseizureresistanceforpressformingoperationHTSS.Moreover,requirementformoldsteelmaterialsistoimproveandeasyheattreatmentandgoodsurfacetreatAccordingtothisrequirement,thecurrentmaterialssuchconventionalD2equivalenttoJISSKD11anditsimprovedmaterialsareimpossibletoattaingoodwearresistancemachinabilitysimultaneously,however,thenewalloydesigncouldaccomplishthebreakthroughbasedon11alloyelementsaddition.SLDMAGICTMhereafterabbreviatedas∗Correspondingauthor.Tel.810854221919fax810854226374.EmailaddressKunichikaKubotahitachimetals.co.jpK.Kubota.tioninlargesizemoldsforautomobilebodyindustries.Themethodofdevelopingalloydesignisreportedelsewhere13.Inthisreport,rolesofalloyingelementsofnewlydevelopedSMAGICareinvestigatedbasedontheselflubricationwithoutcoatingFig.1.2.MaterialsandmethodsAppliedmaterialsforexperimentsarecoldworktoolsteelsbasedondevelopedsteelSMAGIC.Table1showsthechemicalcompositionofeachcoldworktoolsteels.Fig.2showsthecalculatedphasediagramofSKD11andSMAGIC.PhasediagramofotherconventionalsteelsisalmostsametoSKD11.BecauseevenconventionalsteelishighCandhighCrone,thephasediagramismorecomplexthanthesimpleFe–CsteelbecauseofexistenceoftwotypesofcarbideswhichareM7C3andM23C6.Machinabilityhasbeenestimatedbytwowaysfacemillandendmilltests.MachinabilitywithbothmillingwereestimatedbyverticaltypemachinecenterMatsuuraBT40showninFig.2withcuttingspeedof120and100m/min.ASTME618iswellknownasstandardevaluationofmachinability,however,thesetwotypes–seefrontmatter©2011ElsevierB.V.Allrightsreserved.10.1016/j.wear.2011.06.007steelformingdieKubotaa,∗,TakuyaOhbab,ShigekazuMoritoMetallurgicalResearchLaboratory,HitachiMetals,Ltd.21072Yasugicho,Yasugishi,DepartmentofMaterialsScience,ShimaneUniversity,1060Nishikawatsu,Matsue,Shimanerticleinfohistory18November2010inrevisedform29April20116June2011steelsteelweardieabstractCurrentlydevelopedtoolrespondingtoAISID2typeantigallingproperty.Thetioncoefficientandshowsandcomparedwithtypicaldevelopedsteel.TheantigallingIntroductionworktoolsteelforhightensileb6928601,Japan6908504,JapanSLDMAGICTMwasexaminedandcomparedwithotherSKD11cortoolsteelsfromtheviewpointofmachinability,frictionpropertyandresultsindicatedtheSLDMAGICshowsverylowkineticfricmachinability.Theantigallingpropertyofthealloywasstudiedandmodelalloyseliminatingcharacteristicelementsfromthenewlypropertyofthealloywasdiscussedwitharoleofelementsincluded.©2011ElsevierB.V.Allrightsreserved.SMAGICTM,thenameofthenewalloy,canattainbetterwearK.Kubotaetal./Wear27120112884–28892885diagramFig.test.TableChemicalofmoldscuttingtioniswhilemillingconditionTemperaturetingusedFig.test.Fig.1.Calculatedphase2.Detailconditionsoffacemillingtestandschematicdrawingofmachining1compositionoftypicalcoldworktoolsteelsinJapan.SMAGICFe–1.0C–8.3Cr–Ni–Mo–W–Al–Cu–SSKD11Fe–1.5C–12.0Cr–Mo–V8CrSteelFe–1.0C–8.3Cr–Mo–V10CrSteelFe–1.2C–10Cr–Mo–V–SconditionsareselectedbecausemachiningmethodsofdiesandaremainlyintermittentcuttingascomparedtocontinuousofASTME618.DetailsoffacemillingconditionforevaluaofwornwidthoftipweresummarizedinFig.2.Thisconditionsetuponseversidebecausecuttingvolumemustbesuppressedsamedamagemodeiskept.Fig.3showsthedetailsofendconditionformeasurementofcuttingtemperature.Thisissetupasforeasysideoftemperaturemeasurement.oftheendmillwasmeasuredatoppositesideofcutedgebyradiationthermometer.Thefrictiontests,whichwereforevaluatingtheantigallingproperty,wereperformedwith3.Detailconditionsofendmillingtestandschematicdrawingofmachiningofcolddiesteels.Fig.4.Heattreatmentdiagramofdiesteelsforgallingtest.CrankPressKomatsu80tonaftertheheattreatmentshowninFig.4.Fig.5showsthedetailconditionofsocalledhatshapedbendingmethod14asthegallingtest.Strokespeedis40spm,wrinkledepressionforceis2.2ton,strokelengthis60mmwithoutlubricant.Inaddition,worksareadoptedas590and980gradeHTSSofthickness1.6mmwhosesurfacestateareRa0.04H9262mpolishedby1000thgridsandpaperandwithoutZnplating.SurfacetextureismeasuredbysurfaceroughnessmeasurementequipmentTokyoseimitsu,Surfcom.Determinationofgallinglengthaftergallingtestissumoflengthwhichsequentialamplitudeover2.5H9262mexists.Measurement,whichisexecuted1pathbyawork,isnearendpointonwhichgallingistendtooccurstrongly,asmentionedbelow.Thegallingrateisdefinedastheratioofgallinglengthtolengthmeasured.Schematicdrawingofballondisktypetest,whichwasalsoperformedwithfrictiontestingmachineOrienticCorporation,EFMIII1020,showninFig.6.DetailsconditionsofthisexperiFig.5.SchematicdrawingofhatbendingtestwhichevaluatesantigallingpropertiesofdiesteelbyHTSSforming.2886K.Kubotaetal./Wear27120112884–2889Fig.6.Schematicdrawingofballondiskfrictiontestanddetailsofconditions.BothofsurfaceroughnessareaboutR0.2H9262m..menttouseareatedetchedis3.3.1.abilityshowsing.Moreover,samechipsthetributebythisonlythatMAGIC,20sideredFig.8.Resultoftooltemperaturemeasurementinthecaseofendmillingtestofannealedstate.temperature.Judgingfromthecolorofchips,temperatureofSMAGICisabout300◦Cwhileothersarenear500◦C.Sato12alsoverifiedforhardenedstatemachiningthatwornwidthoftipforSMAGICismuchlessthanthatforSKD11andedgetemperatureofSMAGICwasabout50◦ClowerthanthatofSKD11bysimilarmeasurementmethod.aThesearebasedonJISstandardR1613whichisequivalentASTMG99,however,selectionofmaterialisexecutedbyactualreference.areshowninFig.6.ObservationofmicrostructureperformedbyScanningElectronMicrocopyhereafterabbreviasSEM,HitachiS3500afterthespecimensarepolishedandbyNital.Analysisofaveragechemicalcompositionofsteelsexecutedbywetchemicalmethod.ResultsanddiscussionsMachinabilityatannealedconditionFirst,facemillingtestisexecutedinordertoevaluatemachinofeachcoldworktoolsteelsattheannealedcondition.Fig.7theresultofwornwidthoffacemillingcutterafterthetestWornwidthofSMAGICistheleastdatuminallofthesesteels.wornwidthof10Crsteel,whichcontainssulfurastheofSMAGIC,isthesecondleast.However,thecolorofcutofSMAGICisonlygoldwhileallofothersareblue3,4.Atviewpointofabrasivewear,amountofcarbidesmainlyconwearpromotion.WorstresultofSKD11maybeexplainedthispointbecauselargeamountsofCandCrarecontainedinalloy.However,excellenceofSMAGICcannotbeexplainedbyabrasivemodebecausewornwidthofSMAGICislessthanof8Crsteelinspiteofsameamountofcarbides.Fig.8showsedgetemperatureduringendmillingtest.AsforSedgetemperatureduringendmillingisexceptionallyabout◦Clowerthantheseofothersteels.Fromtheseresults,itisconthatdifferenceofchipcolorindicatesdifferenceofcuttingFig.7.Resultofworntipwidthafterfacemillingtestatannealedstate.3.2.FrictionalpropertyunderHTSSformingofactualuseHatshapedbendingtestusing80toncrankpressmachineisexecutedtoevaluateantigallingproperty.Fig.9showstheresultofthetest.Gallingisaphenomenonthatgivesdamagetothesurfaceofworksheetbyhardwelddepositonthecornerofdiewhileworksliding.Thetensiongeneratedontheworksheetiscontrolledbyholdingforceinordertosuppresswrinkle.GallingdoesnotoccurinSMAGICwhileotherdiematerialsoccurundertheconditionafter3timesforming.TwokindsofHTSSgrade,590and980MPa,areutilizedasworkforthistest.Fig.10showsanexampleofsurfaceroughnessmeasurementonthedashlineinFig.9.Here,thedefinitionofgallinglengthisthesumoflengthinwhichamplitudeisover2.5H9262m.Fig.11showsthatgallingratedefinedinexperimentalprocedureincreaseswiththeincreaseofwrinklesuppressionforce.Criticalgallingforceisdefinedasthewinklesuppressionforceofgallingrateaccomplishedover1.Fig.12showscriticalgallingforcefordiematerialsandHTSSgrade.InbothcasesofHTSSgrade,SMAGICissuperiortoSKD11.ThisresultsuggeststhatfrictionforcedecreasesinthecaseofSMAGIC.InthecaseofsameFig.9.Opticalphotographofsheetsurfaceafterbendingtest60spm,1.5tonwrinklesuppressionforce,580MPagradeHTSS.K.Kubotaetal./Wear27120112884–28892887Fig.10.ResultofsurfaceroughnessmeasurementofworkonthedashlineinFig.9aftergallingtestanddeterminationofgallingareainthecaseofSKD11inFig.9.Fig.minute.dieoflargerofcriticalhigheringcanmetalliciftheisFig.of11.Influenceofwrinklesuppressionforceongallingrateat60strokespermaterial,criticalforceofhighergradeHTSSishigherthanthatlowerone.Incaseofhighergradework,elasticregionbecomesandplasticdeformationbecomessmaller.Thustheformationnascentmetallicsurfaceonworksheetisavoidedandthenthegallingforcerises.However,intheactualfieldofstamping,gradeworkishardtobedeformedbecausetheactualformforceisdeterminantforcefortheantigallingproperty.Here,itbeconsideredinfluenceofonlybothformationrateofnascentsurfaceandactualformingforceongallingphenomenon,manyotherconditionsareregardedasconstant.Thereasonwhyactualformingforceisdominantfortheantigallingpropertythatworkshapemustbekeptthesameshapebypreventing12.ComparativeresultofdiematerialsandHTSSgradesoncriticalgallingvaluewinklesuppressingforce.thespringbackandthatis,theformationrateofnascentmetallicsurfaceiskeptconstantregardlesstoworkstrengthwhileactualformingforcerises.Fig.13showsthemicrostructureofSMAGICandSKD11observedbySEM.Carbidesareindicatedbyarrowsforbothfigures.FiguresshowthatcarbidesofSMAGICarefinerthanthatofSKD11.Distancesofcarbidesweremeasuredandaverageddistancesare3.8H9262mforSMAGICand5.8H9262mforSKD11,respectively.ConsideringlowercarboncontentcomparedwithSKD11,averagedistanceofcarbideinSMAGICisexpectedlongerthanthatinSKD11,butnot.Inourpreviouspaper1,shorteraveragedistancebetweencarbidesinSMAGICincreasesabrasivewearresistance.Sincetheantigallingpropertyistheadhesivemode,theshorterdistanceofcarbide,whichincreasesabrasivewearresistanceonharderside2,cannotexplaintheexcellentantigallingpropertyofSMAGIC.Fig.14indicatestheresultoffrictionalpropertiesbythefixedballondisktestwithoutlubricant.Diskspecimensweremadefromthediesusedinthehatbendingtest.InthecaseofSMAGIC,frictioncoefficientislowerthantheseofconventionalsteels.Theincrementalgradientoffrictioncoefficientmeansincreaseofadhesionareaincontactzone.Thefrictiontestresultsuggeststhatantigallingpropertyisimprovedbyselflubrication.Inthemanycasesofactualuse,thewearvolumewasreducedbyhalfinthebothwithandwithoutthesurfacetreatment,thedielifewasexpandedfromdoubleto100times.3,4Asmentionedabove,machinabilityofSMAGICisalsoevaluatedassuperiortootherconventionalsteels.Moreover,bothdistortionandthisdeviationcausedbyheattreatmentaremuchsmallerthanotherconventionalsteels.Inthecaseofmanufacturingdiesandmolds,thesepropertiesaredemandedasforprecisionofclearancebetweenshearedges,andcontributelifeofshearedgesinactualuse.3.3.InfluenceofchemicalcompositiononfrictioncoefficientInordertoclarifytheeffectofelementsonfrictioncoefficientofSMAGICwereinvestigatedwithuseofmodelalloysshowninTable2.Table2isobtainedbychemicalanalysisusing10kgingotwithhotworkingatthesametemperatureastheactualmanufacTable2Chemicalcompositionoftestedsteelmanufacturedby10kgingot.SMAGICFe–1.0C–8.3Cr–Ni–Mo–W–Al–Cu–SSKD11Fe–1.5C–12.0Cr–Mo–V8CrSteelFe–1.0C–8.3Cr–Mo–V–CuFe–1.0C–8.3Cr–Ni–Mo–W–Al–S–WMoFe–1.0C–8.3Cr–Ni–Al–Cu–S–SFe–1.0C–8.3Cr–Ni–Mo–W–Al–Cu–AlFe–1.0C–8.3Cr–Ni–Mo–W–Cu–S
编号:201311171024055362    大小:1.56MB    格式:PDF    上传时间:2013-11-17
  【编辑】
5
关 键 词:
教育专区 外文翻译 精品文档 Friction
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

5.0
 
(3人评价)
浏览:93次
英文资料库上传于2013-11-17

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

教育专区   外文翻译   精品文档   Friction  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5