外文原版-multiscale_modeling_digimat_to_ansys.pdf_第1页
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第2页
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第3页
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第4页
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1|PageCopyrighte-Xstreamengineering,2009Multi-ScaleModelingofCompositeMaterialsandStructureswithDIGIMATtoANSYSDocumentVersion1.0,February2009Copyright,e-Xstreamengineering,2009infoe-Xwww.e-XMaterials:EngineeringPlastics,ReinforcedPlastics.e-XstreamTechnology:DIGIMAT,Digimat-MF,Digimat-FE,DigimattoANSYS,MAP.ComplementaryCAETechnology:Moldflow,Moldex3D,SigmaSoft,ANSYS.Industry:MaterialSuppliers,Automotive,Aerospace,Consumer&IndustrialProducts.TABLEOFCONTENTEXECUTIVESUMMARY.2MaterialMulti-ScaleModeling:anintroduction.2FEHomogenization:anapplicationtonanocomposites.5ModelingFillerClustering,atypicalnanoeffect.5ResultComparison.7FE/MFHCoupledComputation:anapplicationtoanindustrialpart.9ProblemDescription.9MaterialModeling.10SimulationResults.11Bibliography.12LegalNotice.eX,eXdigimatande-Xstreamengineeringareregisteredtrademarksofe-XstreamengineeringSA.Theotherproductandcompanynamesandlogosaretrademarksorregisteredtrademarksoftheirrespectiveowners.2|PageCopyrighte-Xstreamengineering,2009EXECUTIVESUMMARYInthispaper,webrieflyintroducetwomulti-scalemodelingapproaches,namelytheMean-Field(MFH)andFiniteElementHomogenization(FEH)methods.Thesepowerfultechniquesrelatethemicroscopicandmacroscopicstressandstrainfieldswhenmodelingmaterialbehaviorsandhencecancapturetheinfluenceofthematerialmicrostructure(i.e.fiberorientation,fibercontent,fiberlength,etc.)onitsmacroscopicresponse.Toillustratethesetechniques,wealsopresent(i)anapplicationoffiniteelementhomogenizationtoananostructureand(ii)thestudyofaninjectedglassfiberreinforcedplasticneonlightclaspusingfiniteelementcomputationsatthemacroscalecoupledwithMFhomogenizationatthemicroscale.MaterialMulti-ScaleModeling:anintroductionAsamotivatingexample,letusconsideraplasticpartmadeupofathermoplasticpolymerreinforcedwithshortglassfibers.Astypicaloftheinjectionmoldingmanufacturingprocess,thefiberdistributioninsidethefinalproductwillvarywidelyintermsoforientationandlength,seeFigure1.Thecompositematerialwillbebothanisotropicandheterogeneous,whichmakesitextremelydifficulttoperformareliablesimulationoftheproductusingaclassicalapproachbasedonmacroscopicconstitutivemodels.However,apredictivesimulationispossibleviaamulti-scaleapproach,whichcanbedescribedinarathergeneralsettingasfollows.Figure1:Fiberorientationdistributioninaninjectedglassfiber-reinforcedplasticclutchpedal.CourtesyofRhodia&Trelleborg.Letusstudyaheterogeneoussolidbodywhosemicrostructureconsistsofamatrixmaterialandmultiplephasesofso-called“inclusions”,whichcanbeshortfibers,platelets,particles,micro-cavitiesormicro-cracks.Ourobjectiveistopredicttheresponseofthebodyundergivenloadsandboundaryconditions(BCs),basedonitsmicrostructure.Wecandistinguishtwoscales,themicroscopicandmacroscopiclevels,respectively.Theformercorrespondstothescaleoftheheterogeneities,whileatthemacroscale,thesolidcanbeseenaslocallyhomogeneous;seeFigure2.Inpractice,itwouldbecomputationallyimpossibletosolvethemechanicalproblematthefinemicroscale.Therefore,weconsiderthemacroscaleandassumethateachmaterialpointisthecenterofarepresentativevolumeelement(RVE),whichcontainstheunderlyingheterogeneousmicrostructure.Classicalsolidmechanicsanalysisiscarriedoutatthemacroscale,exceptthatateachcomputationpoint,strainorstressvaluesaretransmittedasBCstotheunderlyingRVE.Inotherwords,anumericalzoomisrealizedateachmacropoint.TheRVEproblemsaresolvedandeachofthemreturnsstressandstiffnessvalues,whichareusedatthemacroscale.3|PageCopyrighte-Xstreamengineering,2009Figure2:Illustrationofthemulti-scalematerialmodelingapproach,afterNemat-NasserandHori(1).Nowtheonlydifficultyinthistwo-scales(andmoregenerallymulti-scale)approachistosolvetheRVEproblems.ItcanbeshownthatforaRVEunderclassicalBCs,themacrostrainsandstressesareequaltothevolumeaveragesovertheRVEoftheunknownmicrostrainandstressfieldsinsidetheRVE.Inlinearelasticity,relatingthosetwomeanvaluesgivestheeffectiveoroverallstiffnessofthecompositeatthemacroscale.InordertosolvetheRVEproblem,onecanusethewell-knownfiniteelement(FE)method,seeFigures7to10.Thismethodofferstheadvantagesofbeingverygeneralandextremelyaccurate.However,ithastwomajordrawbackswhichare:seriousmeshingdifficultiesforrealisticmicrostructuresandalargeCPUtimefornonlinearproblems,suchasforinelasticmaterialbehaviour.Anothercompletelydifferentmethodismean-fieldhomogenization(MFH),whichisbasedonassumedrelationsbetweenvolumeaveragesofstressorstrainfieldsineachphaseofaRVE;seeFigure3.ComparedtothedirectFEmethod,andactuallytoallotherexistingscaletransitionmethods,MFHisboththeeasiesttouseandthefastestintermsofCPUtime.However,twoshortcomingsofMFHarethatitisunabletogivedetailedstrainandstressfieldsineachphaseanditisrestrictedtoellipsoidalinclusionshapes.Figure3:Mean-fieldhomogenizationprocess:(i)localstrainsarecomputedbasedonthemacrostrains,(ii)localstressesarecomputedbasedonthelocalstrainsandaccordingtoeachphaseconstitutivemodel,and(iii)macrostressesarecomputedbyaveragingthelocalstresses.4|PageCopyrighte-Xstreamengineering,2009AtypicalexampleofMFHistheMori-Tanakamodel(2)whichissuccessfullyapplicabletotwo-phasecompositeswithidenticalandalignedellipsoidalinclusions.ThemodelassumesthateachinclusionoftheRVEbehavesasifitwerealoneinaninfinitebodymadeoftherealmatrixmaterial.TheBCsinthesingleinclusionproblemcorrespondtothevolumeaverageofthestrainfieldinthematrixphaseoftherealRVE.ThesingleinclusionproblemwassolvedanalyticallybyJ.D.Eshelby(3)inalandmarkpaper,whichisthecornerstoneofMFHmodels.Figure4:SchematicoftheMori-Tanakahomogenizationprocedure.Mori-TanakaandotherMFHmodelsweregeneralizedtoothercases,suchasthermoelasticcoupling,two-phasecompositeswithmisalignedfibers(usingamulti-stepapproach)ormulti-phasecomposites(usingamulti-levelmethod).ThepredictionshavebeenextensivelyverifiedagainstdirectFEsimulationofRVEsorvalidatedagainstexperimentalresults.Asageneralconclusion,itwasfoundthatinlinear(thermo)elasticity,MFHcangiveextremelyaccuratepredictionsofeffectiveproperties,althoughfordistributedorientations,progressinclosureapproximationwillbewelcomed.NotealsothatMFHcanbeusedforUD,andforeachyarninwovencomposites.AnimportantandstillongoingeffortbothintheoreticalmodelingandincomputationalmethodsisthegeneralizationofMFHtothematerialorgeometricnonlinearrealms.Suchextensioninvolvessomemajordifficulties.Thefirstoneislinearization,whereconstitutiveequationsatmicroscaleneedtobelinearizedontolinearelastic-orthermoelastic-likeformat.Thesecondissueisthedefinitionofso-calledcomparisonmaterialswhicharefictitiousmaterialsdesignedtopossessuniforminstantaneousstiffnessoperatorsi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论