英文翻译--神经网络PID在温度控制系统中的研究与仿真.doc英文翻译--神经网络PID在温度控制系统中的研究与仿真.doc

收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

EXPLORATIONANDSIMULATIONOFNEURALNETWORKPIDINTEMPERATURECONTROLSYSTEMABSTRACTTHISPAPERPRESENTSANEWKINDOFINTELLIGENCEPIDCONTROLMETHODONBPNEURALNETWORKANDSOMEOFBASICCONCEPTSABOUTBPNEURALNETWORKNEURALNETWORKINTELLIGENCEPIDCONTROLLERHASMANYADVANCEDPROPERTIESCOMPAREDWITHTRADITIONALPIDCONTROLLERTHEBPNEURALNETWORKPIDCONTROLMETHODISAPPLIEDTOTEMPERATURECONTROLSYSTEMININDUSTRYFIELDTHESIMULATIONRESULTSSHOWTHATTHECONTROLMETHODHASHIGHCONTROLACCURACY,STRONGADAPTATIONANDEXCELLENTCONTROLRESULTSKEYWORDSNEURALNETWORK,PIDCONTROLLER,TEMPERATURECONTROLSYSTEM1FOREWORDININDUSTRIALPROCESSCONTROL,PIDCONTROLISABASICCONTROLMETHOD,ITSROBUSTNESS,SIMPLESTRUCTURE,EASYTOIMPLEMENT,BUTTHECONVENTIONALPIDCONTROLALSOHASITSOWNDISADVANTAGE,BECAUSETHEPARAMETERSOFCONVENTIONALPIDCONTROLLERISBASEDONBEINGMATHEMATICALMODELOFCONTROLLEDOBJECTIDENTIFIED,WHENTHEMATHEMATICALMODELOFTHEOBJECTARECHANGING,NONLINEARTIME,PIDPARAMETERSISNOTEASYINACCORDANCEWITHITSACTUALSITUATIONANDMAKEADJUSTMENTS,THEIMPACTOFTHEQUALITYCONTROLSOTHATTHECONTROLOFTHEQUALITYCONTROLSYSTEMDECLINEESPECIALLYINTHEPURETIMEDELAYCHARACTERISTICSWITHTHEINDUSTRIALPROCESS,THECONVENTIONALPIDCONTROLMOREDIFFICULTTOMEETTHEREQUIREMENTSOFTHECONTROLACCURACYBECAUSEOFNEURALNETWORKSWITHSELFORGANIZATION,SELFLEARNING,ADAPTIVECAPACITY,INTHISPAPER,BASEDONBPNEURALNETWORKPIDCONTROLLER,SOTHATARTIFICIALNEURALNETWORKPIDCONTROLWITHTHETRADITIONALCOMBINATIONOFEACHOTHERANDJOINTLYIMPROVEQUALITYCONTROLANDTOTHEMETHODINTHETEMPERATURECONTROLSYSTEMUSINGTHESIMULATIONLANGUAGEMATLABAPPLICATION2BPNEURALNETWORKMODELANDALGORITHMCONSTITUTE21BPNEURALNETWORKMODELCONSTITUTEBPNEURALNETWORKLEARNINGPROCESSCONSTITUTEDMAINLYBYTWOSTAGESTHEFIRSTPHASEFORWARDPROPAGATION,THEINPUTSIGNALTHROUGHTHEINPUTLAYER,HIDDENLAYERAFTERLAYERBYLAYERTREATMENT,INTHEOUTPUTLAYERISCALCULATEDFOREACHNEURONTHEACTUALOUTPUTVALUETHESECONDSTAGETHEPROCESSOFERRORBACKPROPAGATION,IFNOTINTHEOUTPUTLAYERTHEDESIREDOUTPUTVALUE,THEACTUALLAYERBYLAYERRECURSIVEOUTPUTANDDESIREDOUTPUTOFTHEMARGIN,ANDTHERIGHTTOADJUSTTHEBASISOFTHISERRORFACTOR22THENEURALNETWORKPIDCONTROLLERSTRUCTUREANDALGORITHMINTHETRADITIONALPIDCONTROL,CLASSICALINCREMENTALPIDCONTROLFORMSUKUK1PEKEK1IEKDEK2EK1EK2KPPROPORTIONALCOEFFICIENTIIOPINTEGRALCOEFFICIENTODPDDIFFERENTIALCOEFFICIENTSETUPBPNEURALNETWORKPIDCONTROLLERSTRUCTURERKEKUKYK_YKADAPTIVEINORDERTOACHIEVEDIP,,OFTHEPURPOSE,THEOUTPUTLAYERFORTHETHREENEURONS,CORRESPONDINGTODIP,,INPUTLAYER,HIDDENLAYERNEURONS,THENUMBEROFCHARGEDOBJECTSINACCORDANCEWITHTHECOMPLEXITYOFFIXEDHIDDENLAYERACTIVATIONFUNCTIONUSEDFORTHEPOSITIVEANDNEGATIVESYMMETRICALSIGMOIDFUNCTIONXXXXEEEEXXFTANHOUTPUTLAYERACTIVATIONFUNCTIONOFTHEUSEOFNONNEGATIVESIGMOIDFUNCTIONXXXEEEXXG2TANH1WEASSUMETHATO31,O32,O33ISTHEOUTPUTOFOUTPUTLAYER,WHICHCORRESPONDTOP,I,DWETAKETHEPERFORMANCEINDEXFUNCTIONASFOLLOWS21121KYKRJWHENTHEACTUALOUTPUTANDTHEDEVIATIONBETWEENTHEDESIREDOUTPUT,THENTHEERRORBACKPROPAGATIONREVERSETHESPREADOFTHESUBSTANCEISBYADJUSTINGTHEWEIGHTSSOTHATTHESMALLESTDEVIATION,ITCANUSETHESTEEPESTDESCENTMETHOD,ERRORFUNCTIONBYANEGATIVEGRADIENTDIRECTIONTOALLLEVELSOFNEURONWEIGHTSTOADJUSTORAMENDTHENHAVENNPIDNNPLANTNNARITHMETIC13KWLI33KWWJLILILEARNINGRATEMOMENTUMOFAVAILABLEBYTHECHAINRULE3LIWJ3333311LILLLLWKNETKNETOOKUKUKYKYJEK1333331LILLLLWKNETKNETOOKUKUKYONEL1,2,3SOBPNEURALNETWORKCANBETHEOUTPUTLAYERWEIGHTSOFTHECALCULATIONFORMULA13233KWKOKWLIILLIOFWHICH1SGN13,33KNETGKOKUKUKYKELLLBECAUSEOFTHEPIDCONTROL1KUKYALGORITHMINNORMALCIRCUMSTANCESAREUNKNOWN,CANBEUSEDTOREPLACEFUNCTIONSYMBOLS1SGNKUKY,ANDTHROUGHADJUSTMENTSTOCORRECTERRORSEMPATHYCANBEHIDDENLAYERWEIGHTCOEFFICIENTCALCULATIONFORMULA2122KWKOWIJJIIJOFWHICH331322KWKNETFLILLII,INTHEABOVEVARIOUSTYPES,THESCORNER1,2,3EXPRESS,RESPECTIVELY,INPUTLAYER,HIDDENLAYER,OUTPUTLAYER,LTHENUMBEROFOUTPUTLAYERNEURONSITHENUMBEROFHIDDENLAYERNEURONSJTHENUMBEROFINPUTLAYERNEURONS1XGXGG‘2/12XFF‘BASEDONTHEABOVECANBEBPNEURALNETWORKCONTROLALGORITHMS1DETERMINETHENEURALNETWORKARCHITECTURE,INITIALIZEDWEIGHTSONEACHFLOORCONTROLTHEVOLUMEOFOUTPUT,ERRORCHECKTHEINITIALVALUE02OFTHESAMPLINGSYSTEMHASBEENKR、KYCALCULATEDBYTHEERRORKYKRKEANDUNDERTHEINCREMENTALPIDALGORITHMTOTHEERRORCOMPONENTINPUTLAYERASINPUT3ACCORDINGTOALLFLOORSOFTHEWEIGHTCOEFFICIENTSARECALCULATEDLAYERSBPNEURALNETWORKINPUTANDOUTPUTOUTPUTLAYERWEIGHT,RESPECTIVELYKP、KI、KDACCORDINGTOINCREMENTALPIDCONTROLLERFORMULACANBEOUTPUTU4WILLSERVEUASTHESUPERVISIONOFBPNEURALNETWORKSIGNAL,TOTHEBACKPROPAGATIONALGORITHMBPONLINEACCORDINGTOTHEOUTPUTLAYER,HIDDENLAYEROFTHELEARNINGALGORITHMADJUSTTHEWEIGHTSONEACHFLOOR,SOTHATTOACHIEVEADAPTIVEADJUSTPIDCOEFFICIENTS5BACKTO23INTHETEMPERATURECONTROLSYSTEMSIMULATIONEXPERIMENTINTHEINDUSTRIALPRODUCTIONPROCESS,CONTROLTHEPRODUCTIONPROCESSOFALLKINDS,OFTENTOTHETEMPERATUREOFTHEPROCESSSUCHASTIMEDELAYCONTROLOFTHEPROCESSSETTHETEMPERATURECONTROLWASCHARGEDWITHTHEPROCESSOFTRANSFERFUNCTIONIS1101403SSSGSE60THESIMULATIONRESULTSASFOLLOWSFIGURE1FIGURE2FIGURE1FORTHECONVENTIONALPIDCONTROL,FIG2FORTHEBPNEURALNETWORKPIDCONTROLFROMTHEFIGUREWECANSEETHATCONVENTIONALPIDCONTROLARISINGFROMOVERSHOOTANDTRANSITIONTIMETHANTHEBPNEURALNETWORKPIDCONTROLARISINGFROMOVERSHOOTANDTHETRANSITIONTIMEISMUCHGREATER,WHICHCANBESEENBPNEURALNETWORKPIDCONTROLSTRONGSELFADAPTABILITYANDHIGHCONTROLPRECISION4CONCLUDINGREMARKSINTHISPAPER,THEROOTCONTROLOFBPNEURALNETWORKALGORITHMTOTIMEDELAYTHETEMPERATURECONTROLSYSTEMSIMULATION,EXPERIMENTALRESULTSSHOWTHATTHEBPNEURAL
编号:201311171451306721    类型:共享资源    大小:481.00KB    格式:DOC    上传时间:2013-11-17
  
5
关 键 词:
专业文献 学术论文 精品文档 英文翻译
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:英文翻译--神经网络PID在温度控制系统中的研究与仿真.doc
链接地址:http://www.renrendoc.com/p-96721.html

当前资源信息

5.0
 
(3人评价)
浏览:48次
淘宝运营上传于2013-11-17

官方联系方式

客服手机:17625900360   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

精品推荐

相关阅读

人人文库
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5