中文翻译.docx

绿色溶剂处理的分子太阳能电池

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:9676044    类型:共享资源    大小:1.01MB    格式:ZIP    上传时间:2018-03-20 上传人:闰*** IP属地:河南
15
积分
关 键 词:
绿色 溶剂 处理 分子 份子 太阳能电池
资源描述:
绿色溶剂处理的分子太阳能电池,绿色,溶剂,处理,分子,份子,太阳能电池
内容简介:
SUSTAINABLECHEMISTRYHOTPAPERDOI101002/ANIE201409208GREENSOLVENTPROCESSEDMOLECULARSOLARCELLSXIAOFENCHEN,XIAOFENGLIU,MARKABURGERS,YEHUANG,ANDGUILLERMOCBAZANABSTRACTHIGHEFFICIENCYBULKHETEROJUNCTIONBHJORGANICSOLARCELLSWITHPOWERCONVERSIONEFFICIENCIESOFMORETHAN5CANBEFABRICATEDUSINGTHEGREENSOLVENT2METHFTHEACTIVELAYERSCOMPRISEABLENDOFAMOLECULARSEMICONDUCTORDONORWITHINTERMEDIATEDIMENSIONSX2ANDTHESOLUBLEFULLERENEDERIVATIVE6,6PHENYLC61BUTYRICACIDOCTYLESTERPC61BC8ASWITCHOFTHEPROCESSINGSOLVENTFROMCHLOROFORMTO2METHFLEADSTONONEGATIVEIMPACTSONTHEMORPHOLOGYANDCHARGETRANSPORTPROPERTIESOFOPTIMALLYPERFORMINGBHJFILMSEXAMINATIONSBYABSORPTIONSPECTROSCOPY,ATOMICFORCEMICROSCOPY,ANDGRAZINGINCIDENCEWIDEANGLEXRAYSCATTERINGREVEALNOSIGNIFICANTMODIFICATIONOFMORPHOLOGYTHESERESULTSSHOWTHATGREENSOLVENTSCANBEEXCELLENTALTERNATIVESFORLARGEAREAPRINTINGOFHIGHPERFORMANCEORGANICPHOTOVOLTAICSOPVSANDTHUSOPENNEWOPPORTUNITIESFORSUSTAINABLEMASSPRODUCTIONOFORGANICSOLARCELLSANDOTHEROPTOELECTRONICDEVICESSIGNIFICANTSTRIDESARENEEDEDINORDERTODEVELOPNEWTECHNOLOGIESTHATHAVEASCOREOBJECTIVESRENEWABLEENERGYANDENVIRONMENTALPROTECTION,WHILECONCURRENTLYALLOWINGMASSMANUFACTURINGUSINGNONTOXICANDCHEMICALLYSUSTAINABLERESOURCES13ORGANICSOLARCELLSOSCSPRODUCEDBYSOLUTIONPROCESSINGAREARELEVANTCASEINPOINT47APROMISINGVISIONOFFABRICATINGTHEACTIVELAYERISTHROUGHROLLTOROLLMANUFACTURING,WHICHCANMINIMIZECOSTANDTHEENERGYOFPRODUCTION,ANDRESULTINFLEXIBLEANDLIGHTWEIGHTMODULESWITHREDUCEDINSTALLATIONCOSTS8HOWEVER,ALTHOUGHTHEPOWERCONVERSIONEFFICIENCIESPCESOFOSCSHAVESTEADILYINCREASEDTHROUGHIMPROVEMENTSINMATERIALSDESIGN,914MECHANISTICINSIGHT,1519ANDDEVICEARCHITECTURES,2022THEVASTMAJORITYOFHIGHPERFORMANCEDEVICESWITHBULKHETEROJUNCTIONBHJSTRUCTURESAREDEPOSITEDOUTOFCHLORINATEDAND/ORAROMATICSOLVENTS,FOREXAMPLE,CHLOROBENZENESUCHSOLVENTSAREWELLRECOGNIZEDTOBECONTAMINANTSINDRINKINGWATERANDEXHIBITVARIOUSTOXICITYLEVELS2326ITISWORTHNOTINGTHATREGULATIONSAREBEINGENACTED,PARTICULARLYINTHEEUROPEANUNION,THATHAVEASALONGTERMGOALOFTHEELIMINATIONOFHARMFULANDUNSUSTAINABLECHEMICALSANDMATERIALS3ENVIRONMENTALLYBENIGNSOLVENTSHAVEYETTOBEUSEDTOFABRICATETHEMOSTEFFICIENTBHJBLENDSREPORTSHAVEAPPEAREDTHATDESCRIBETHEUSEOFCONJUGATEDPOLYMERSWITHSIDEGROUPSTHATINCREASETHESOLUBILITYINTYPICALLYMOREPOLARBENIGNSOLVENTS,SUCHASNMETHYL2PYRROLIDONE27ANDALCOHOL28HOWEVER,THEEXTENTTOWHICHTHESESIDEGROUPSINFLUENCESOLIDSTATEMORPHOLOGY,FOREXAMPLEMISCIBILITYWITHFULLERENEDERIVATIVES,ISNOTWELLUNDERSTOODITSEEMSREASONABLETOUSTHATMOLECULESWITHLESSEXTENDEDSTRUCTURESWOULDBEATTRACTIVECANDIDATESTOEXPLORETHECASTINGOFACTIVEBHJFROMGREENSOLVENTS,GIVENTHEIRGREATERSOLUBILITYRELATIVETOTHEIRMACROMOLECULARCOUNTERPARTSHERE,WEREPORTTHEUSEOF2METHYLTETRAHYDROFURAN2METHFFORTHEFABRICATIONOFBHJSOLARCELLSWITHPCEOFAPPROXIMATELY52METHFCANBEOBTAINEDFROMFURFURAL,WHICHISDERIVEDFROMAGRICULTURALBYPRODUCTS29,30ITFITSWITHINTHECLASSOFSOLVENTSSOUGHTFROMRENEWABLERESOURCESANDTHECONCEPTOFCAPITALIZINGONWASTETOGENERATEUSEFULCHEMICALSMOREOVER,THETOXICITYOF2METHFISLOWERTHANTHATOFCOMMONLYUSEDHALOGENATEDANDAROMATICSOLVENTS,SUCHASCHLOROBENZENEANDCHLOROFORMCHCL3312METHFISOFTENCONSIDEREDAGREENSOLVENTSUBSTITUTEINORGANICSYNTHESES,INCLUDINGORGANOCATALYSIS,ANDPHARMACEUTICALCHEMISTRY3234ITSEEMEDREASONABLETOEXAMINEX2ASTHEMOLECULARDONORSEESCHEME1FORMOLECULARSTRUCTURESTHISMATERIALEXHIBITSHIGHTHERMALSTABILITYANDCRYSTALLINITYTOGETHERWITHGOODSOLUBILITYINNONPOLARSOLVENTS35MOREOVER,PCESOFAROUND65HAVEBEENACHIEVEDWITHBLENDSOFX2WITH6,6PHENYLC61BUTYRICACIDMETHYLESTERPC61BMFROMCHCL3INTHEABSENCEOFSOLVENTADDITIVESSECOND,THEPCEVALUESAREMAINTAINEDATSIMILARLEVELSACROSSARANGEOFDAWTWTCOMPOSITIONSFROM73TO46THEBHJPERFORMANCEISTHUSRELATIVELYRESISTANTTOCOMPOSITIONALVARIATIONS36ANINITIALSETOFTESTSDEMONSTRATEDTHATTHESOLUBILITYOFX2IN2METHFATROOMTEMPERATUREISAPPROXIMATELY29MGMLC01,WHICHPROVEDTOBESUFFICIENTFORCASTINGFILMSOFMORETHAN300NMTHICKNESSWITHRESPECTTOTHEFULLERENEACCEPTOR,THESOLUBILITYOFWIDELYUSEDPC61BMIN2METHFISLESSTHAN1MGMLC01,WHICHISINSUFFICIENTFORSPINCOATINGWETHUSEXAMINEDDOUBLYSUBSTITUTEDBISPCBMANDADERIVATIVEWITHALONGERALKYLCHAIN,PC61BC8,ANDDETERMINEDSOLUBILITIESHIGHERTHAN15MGMLC01AND9MGMLC01,RESPECTIVELYINITIALEFFORTSTOSCREENDEVICEPERFORMANCESWITHX2BISPCBMDEMONSTRATEDXCHEN,DRXLIU,MABURGERS,DRYHUANG,PROFDRGCBAZANCENTERFORPOLYMERSANDORGANICSOLIDS,DEPARTMENTOFCHEMISTRYANDBIOCHEMISTRY,UNIVERSITYOFCALIFORNIA,SANTABARBARASANTABARBARA,CA93106USAEMAILBAZANCHEMUCSBEDUMATERIALSSYNTHESISEFFORTSWERESUPPORTEDBYTHEINSTITUTEFORCOLLABORATIVEBIOTECHNOLOGIESTHROUGHGRANTW911NF090001FROMTHEUSARMYRESEARCHOFFICESTRUCTURALCHARACTERIZATIONSTUDIESWEREFUNDEDTHROUGHAGRANTFROMTHEOFFICEOFNAVALRESEARCHN000141410101PARTOFTHEEXPERIMENTSWEREPERFORMEDATTHENATIONALCENTERFORELECTRONMICROSCOPYANDADVANCEDLIGHTSOURCE,LAWRENCEBERKELEYNATIONALLABORATORY,WHICHISSUPPORTEDBYTHEOFFICEOFSCIENCE,OFFICEOFBASICENERGYSCIENCES,SCIENTIFICUSERFACILITIESDIVISION,OFTHEUSDEPARTMENTOFENERGYUNDERCONTRACTNODEAC0205CH11231THEAUTHORSACKNOWLEDGESUPPORTOFSTANFORDSYNCHROTRONRADIATIONLIGHTSOURCE,WHICHISSUPPORTEDBYTHEUSDEPARTMENTOFENERGYSUPPORTINGINFORMATIONFORTHISARTICLEISAVAILABLEONTHEWWWUNDERHTTP/DXDOIORG/101002/ANIE201409208ANGEWANDTECOMMUNICATIONS14378C232014WILEYVCHVERLAGGMBHCOKGAA,WEINHEIMANGEWCHEMINTED2014,53,1437814381CONSISTENTLYPOORERPERFORMANCERELATIVETOX2PC61BC8SEETHESUPPORTINGINFORMATION,FIGURES1EMPHASISWASTHEREFOREPLACEDONEXAMINATIONOFTHEX2PC61BC8BLENDTHEABSORPTIONSPECTRAOFX2PC61BC8BLENDSCASTFROM2METHFANDCHCL3FIGURE1EXHIBITNEARLYIDENTICALCHARACTERISTICSINTHE300900NMRANGE,WHICHAREALSOVERYSIMILARTOTHATOBSERVEDWITHX2PC61BMFILMSPREPAREDFROMCHCL336THESURFACEROUGHNESSANDFILMMORPHOLOGY,ASDETERMINEDBYATOMICFORCEMICROSCOPYAFM,AREALSONOTGREATLYAFFECTEDBYTHECHOICEOFSOLVENTSEEFIGURES2THESECHARACTERIZATIONTOOLSTHUSDONOTSHOWANYOBVIOUSDIFFERENCESINPOSSIBLECHANGESINSURFACEFEATURESORFILMQUALITYTHATWOULDBEDETRIMENTALFACTORSFORDEVICEFABRICATIONHOLEONLYDIODESWEREFABRICATEDTODETERMINETHEEFFECTOFPROCESSINGTHATTHEACTIVELAYERFROM2METHFWOULDHAVEONHOLETRANSPORTCURRENTDENSITYVOLTAGECHARACTERISTICSJVINTHEDARKSEEFIGURES3WERECOLLECTEDANDTHEMOTTGURNEYLAWFORTHESPACECHARGELIMITEDCURRENTSCLCWASUSEDTODETERMINETHEZEROFIELDMOBILITYOFTHELAYER38ANALYSISOFTHERESULTSSHOWNINFIGURE2PROVIDEDHOLEMOBILITIESOF21C14810C04CM2VC01SC01CHCL3AND56C14810C04CM2VC01SC012METHFINDEED,THEFILMCASTFROM2METHFEXHIBITEDSLIGHTLYHIGHERHOLEMOBILITY,ADESIRABLEQUALITYFOREXTRACTIONOFPHOTOINDUCEDCHARGECARRIERSINPHOTOVOLTAICDEVICES39BHJDEVICESFABRICATEDFROMEITHERCHCL3OR2METHFWERECHARACTERIZEDINPARALLELTOINVESTIGATETHEPHOTOVOLTAICPROPERTIESTHEDEVICESTRUCTUREADOPTEDFOROURSTUDIESISITO/MOOX/X2PC61BC8/CA/ALANEXAMINATIONOFPREVIOUSWORK36LEDUSTOFOCUSONTHEFABRICATIONOFX2PC61BC8WITH6040AND5050RATIOSTHESETWORATIOSPROVIDEDEVICESWITHVERYSIMILARCHARACTERISTICSTABLES4TABLE1PROVIDESASUMMARYOFDEVICECHARACTERISTICSFORX2PC61BC85050,THEAVERAGEVALUESCORRESPONDTOTHEEXAMINATIONOFATLEAST20DEVICESFIGURE3APROVIDESTHECURRENTDENSITYVOLTAGECHARACTERISTICSJVOFTHEOPTIMALDEVICEOBTAINEDFROM2METHFFROMWHICHAPCEOF51ISDEMONSTRATEDCORRESPONDINGLY,THEBESTPERFORMINGDEVICEPROCESSEDFROMCHCL3SHOWSAPCEOF47BOTHDEVICESSHOWLOWLEAKAGEINTHEJVPLOTSINTHEDARKFIGURES5THEEXTERNALQUANTUMEFFICIENCYEQECURVESOFTHEBESTPERFORMANCEDEVICESARESCHEME1MOLECULARSTRUCTURESOFX2,PDTSFBTTH22,PCDTPTFU22,BISPCBM,PC61BC8,AND2METHFFIGURE1THINFILMUVVISABSORPTIONSPECTRAOF5050X2PC61BC8BLENDOBTAINEDFROM2METHFANDCHCL3FROMSOLUTIONSCONTAINING25MGMLC01TOTALSEMICONDUCTORCONTENTFIGURE2JVPLOTSOFX2PC61BC8HOLEONLYDIODES25MGMLC01TOTALCONCENTRATION,DA5050,WT/WTPREPAREDFROMCHCL3AND2METHFTABLE1PHOTOVOLTAICPROPERTIESOFDEVICESPROCESSEDOUTOFDIFFERENTSOLVENTSATDIFFERENTCONCENTRATIONSX2PC61BC85050SOLVENTCONCJSCVOCFFPCEMGMLC01MACMC02VBESTAVGCHCL32096C603072C600262C61454325115C603072C600154C62474630123C602071C600352C6247462METHF20103C602072C600259C62464425123C602072C600255C61514830125C603072C600253C624947FIGURE3AJVCHARACTERISTICS,BEQECURVESOFTHEOPTIMALPERFORMANCEMEASUREDFROMFILMSPREPAREDFROM2METHFANDCHCL3ANGEWANDTECHEMIE14379ANGEWCHEMINTED2014,53,1437814381C232014WILEYVCHVERLAGGMBHCOKGAA,WEINHEIMWWWANGEWANDTEORGPROVIDEDINFIGURE3BASOBSERVED,DEVICESSHOWSIMILARQUANTUMEFFICIENCIESINTHERANGEFROM500TO800NM,ALTHOUGHFORREASONSNOTYETUNDERSTOOD,THEDEVICEWITH2METHFSHOWSSLIGHTLYHIGHERQUANTUMEFFICIENCIESNEAR450NMGRAZINGINCIDENCEWIDEANGLEXRAYSCATTERINGGIWAXSWASUSEDTOINVESTIGATESTRUCTURALORDERINTHEBLENDS40OUTOFPLANEANDINPLANEREFLECTIONPROFILESARESHOWNINFIGURE4A,BFILMSTHATWERESPINCASTFROM2METHFORCHCL3EXHIBITSIMILARPEAKSINPLANEDIRECTION,PPSTACKINGATQ18C138C01ANDALKYLCHAINPACKINGINTHEOUTOFPLANEDIRECTION,ATQ039C138C0136CRYSTALLITECORRELATIONLENGTHSCCLVALUESDETERMINEDUSINGTHE100PEAKATQ039C138C01WEREFOUNDTOBE119NMCHCL3AND124NM2METHFASIMILARANALYSISFORTHE010PEAKINPLANEDIRECTIONRESULTEDINCCLVALUESOF75NMCHCL3AND6NM2METHFTHESESIMILARITIESSUGGESTTHATCRYSTALLITEFEATURESOFX2OBTAINEDFROM2METHFANDCHCL3ARESIMILAR,THEREBYDEMONSTRATINGTHESIMILARABILITYOFTHETWOSOLVENTSTOORGANIZETHEBHJCOMPONENTSWITHINTHETIMESCALEOFFILMFORMATIONITSEEMEDAPPROPRIATETODISCUSSTWOADDITIONALDONORMOLECULESINORDERTOBEGINTHEIDENTIFICATIONOFRELEVANTDESIRABLEMOLECULARAND/ORBULKFEATURESTHATENABLEPROCESSINGWITHENVIRONMENTALSOLVENTONEEXAMPLEINVOLVESTHEWELLSTUDIEDMOLECULEPDTSFBTTH22,WHICHHASGARNEREDSIGNIFICANTATTENTIONANDFORWHICHSUBSTANTIALDEVICEOPTIMIZATIONPROTOCOLSANDMORPHOLOGICALCHARACTERIZATIONEXIST41FORTHEPURPOSEOFOURSTUDIES,PDTSFBTTH22HASNODETECTABLESOLUBILITYIN2METHFANDISTHUSNOTUSEFULTHESECONDEXAMPLEINVOLVESPCDTPTFU22,WHICHCONTAINSSTRUCTURALMODIFICATIONSFORINCREASINGTHESOLUBILITYINPOLARSOLVENTSSPECIFICALLY,ALKYLSIDECHAINSWEREEXCHANGEDFORETHYLENEGLYCOLSIDECHAINS,ANDBITHIOPHENEMOIETIESFORBIFURANBUILDINGBLOCKS42HOWEVER,PCDTPTFU22PC61BC8DEVICESFABRICATEDFROM2METHFSHOWNOPHOTOVOLTAICACTIVITYSEEFIGURES6EXAMINATIONBYXRAYDIFFRACTIONTECHNIQUESSHOWSNOEVIDENCEOFCRYSTALLIZATIONINTHEFILMSFIGURES7THUS,INTHECASEOFPCDTPTFU22,THEMOLECULARFRAGMENTSTHATAREINCLUDEDWITHINTHEMOLECULARSTRUCTURETOIMPROVEMISCIBILITYINPOLARSOLVENTSLEADTORESISTANCETOCRYSTALLIZATIONINTHEBULKCRYSTALLINECONTENTISAFEATUREASSOCIATEDWITHHIGHPERFORMANCEMOLECULARPHOTOVOLTAICFILMSINCONCLUSION,WEHAVESHOWNTHATMOLECULARSOLARCELLSWITHPOWERCONVERSIONEFFICIENCIESOVER5CANBEFABRICATEDBYPROCESSINGX2PC61BC8BLENDSFROM2METHFTHISSOLVENTISDERIVEDFROMAGRICULTURALBYPRODUCTSANDISCONSIDERABLYLESSTOXICTHANWIDELYUSEDAROMATICORHALOGENATEDALTERNATIVESTHEDONORCOMPONENTX2WASCHOSENONTHEBASISTHATBLENDSWITHPC61BMCANPERFORMWELLACROSSAWIDECOMPOSITIONRANGEINTHEABSENCEOFANADDITIVEORTHERMALPROCESSINGITISWORTHNOTINGTHATTHEX2PC61BC8BLENDPROVIDESSLIGHTLYHIGHEREFFICIENCIESFROM2METHFRELATIVETOTHEMORECONVENTIONALCHCL3ASSOLVENTALTHOUGHHIGHLYSUCCESSFULWHENPROCESSEDFROMHALOGENATEDAROMATICSOLVENTS,PDTSFBTTH22ISNOTSUITABLEBECAUSEOFSOLUBILITYLIMITATIONSINPOLARSOLVENTSINTHECASEOFPCDTPTFU22,THESTRUCTURALCOMPONENTSINCLUDEDTOAIDINSOLUBILITYLEADTOARESISTANCETOWARDCRYSTALLIZATION,AFEATUREWHICHWEFINDIMPORTANTFORATTAININGUSEFULMOLECULARBHJMORPHOLOGIESALTOGETHER,THESEFINDINGSOPENNEWOPPORTUNITIESFORCONSIDERINGMASSPRODUCTIONOFORGANICSOLARCELLS,ANDOTHEROPTOELECTRONICDEVICESITALSOHIGHLIGHTSTHATSUBSTANTIALMOLECULARDESIGNMAYNOTBEFUNDAMENTALLYNECESSARYFOROPENINGENVIRONMENTALLYBENIGNPROCESSINGRECEIVEDSEPTEMBER18,2014PUBLISHEDONLINENOVEMBER11,2014KEYWORDSGREENCHEMISTRYPOWERCONVERSIONMOLECULARSOLARCELLSORGANICSEMICONDUCTORSSUSTAINABLECHEMISTRY1JHCLARK,VBUDARIN,FEIDESWARTE,JJEHARDY,FMKERTON,AJHUNT,RLUQUE,DJMACQUARRIE,KMILKOWSKI,ARODRIGUEZ,OSAMUEL,SJTAVENER,RJWHITE,AWILSON,GREENCHEM2006,8,8538602ESBEACH,ZCUI,PTANASTAS,ENERGYENVIRONSCI2009,2,103810493JSHERMAN,BCHIN,PDHUIBERS,RGARCIAVALLS,TAHATTON,ENVIRONHEALTHPERSPECT1998,106,2532714XGUO,MZHANG,CCUI,JHOU,YLI,ACSAPPLMATERINTERFACES2014,6,819081985KSCHEN,HLYIP,CWSCHLENKER,DSGINGER,AKYJEN,ORGELECTRON2012,13,287028786DJBURKE,DJLIPOMI,ENERGYENVIRONSCI2013,6,205320667IBURGUC216SCEBALLOS,FMACHUI,JMIN,TAMERI,MMVOIGT,YNLUPONOSOV,SAPONOMARENKO,PDLACHARMOISE,MCAMPOYQUILES,CJBRABEC,ADVFUNCTMATER2014,24,144914578RSNDERGAARD,MHSEL,DANGMO,TTLARSENOLSEN,FCKREBS,MATERTODAY2012,15,36499YJCHENG,SHYANG,CSHSU,CHEMREV2009,109,5868592310BCARSTEN,FHE,HJSON,TXU,LYU,CHEMREV2011,111,1493152811JCHEN,YCAO,ACCCHEMRES2009,42,1709171812IMCCULLOCH,RSASHRAF,LBINIEK,HBRONSTEIN,CCOMBE,JEDONAGHEY,DIJAMES,CBNIELSEN,BCSCHROEDER,WZHANG,ACCCHEMRES2012,45,71472213NBLOUIN,MLECLERC,ACCCHEMRES2008,41,1110111914YLI,ACCCHEMRES2012,45,723733FIGURE4GIWAXSSTUDYOFX2PC61BC8BLENDFILMS25MGMLC01TOTALCONCENTRATION,DA5050PREPAREDFROMCHCL3AND2METHFAANDBAREC6SECTORPROFILESALONGTHENEARLYOUTOFPLANEANDINPLANEDIRECTIONS,RESPECTIVELYANGEWANDTECOMMUNICATIONS14380WWWANGEWANDTEORGC232014WILEYVCHVERLAGGMBHCOKGAA,WEINHEIMANGEWCHEMINTED2014,53,143781438115AJMOULC216,KMEERHOLZ,ADVMATER2008,20,24074516JPEET,JYKIM,NECOATES,WLMA,DMOSES,AJHEEGER,GCBAZAN,NATMATER2007,6,49750017PZALAR,MKUIK,NARAN,JALOVE,TQNGUYEN,ADVENERGYMATER2014,DOI101002/ANEM20140043818PMBEAUJUGE,JMJFRC216CHET,JAMCHEMSOC2011,133,200092002919BACOLLINS,JECOCHRAN,HYAN,EGANN,CHUB,RFINK,CWANG,TSCHUETTFORT,CRMCNEILL,MLCHABINYC,HADE,NATMATER2012,11,53654320JYOU,LDOU,KYOSHIMURA,TKATO,KOHYA,TMORIARTY,KEMERY,CCCHEN,JGAO,GLI,YYANG,NATCOMMUN2013,4,144621GYU,JGAO,JCHUMMELEN,FWUDL,AJHEEGER,SCIENCE1995,270,1789179122SKHAU,HLYIP,AKYJEN,POLYMREV2010,50,47451023DCALAMARI,SGALASSI,FSETTI,MVIGHI,CHEMOSPHERE1983,12,25326224GVANHOOGEN,AOPPERHUIZEN,ENVIRONTOXICOLCHEM1988,7,21321925PTHEITMULLER,TAHOLLISTER,PRPARRISH,BULLENVIRONCONTAMTOXICOL1981,27,59660426HTTP/WWWEPAGOV/TTN/ATW/HLTHEF/CHLOROBEHTML27YCHEN,SZHANG,YWU,JHOU,ADVMATER2014,26,2744274928CDUAN,WCAI,BBYHSU,CZHONG,KZHANG,CLIU,ZHU,FHUANG,GCBAZAN,AJHEEGER,YCAO,ENERGYENVIRONSCI2013,6,3022303429YGU,FJC216RC244ME,CHEMSOCREV2013,42,9550957030JHCLARK,LAPFALTZGRAFF,VLBUDARIN,AJHUNT,MGRONNOW,ASMATHARU,DJMACQUARRIE,JRSHERWOOD,PUREAPPLCHEM2013,85,1625163131VANTONUCCI,JCOLEMAN,JBFERRY,NJOHNSON,MMATHE,JPSCOTT,JXU,ORGPROCESSRESDEV2011,15,93994132VPACE,PHOYOS,LCASTOLDI,PDOMC237NGUEZDEMARC237A,ARALCC181NTARA,CHEMSUSCHEM2012,5,1369137933SSHANMUGANATHAN,DNATALIA,AVANDENWITTENBOER,CKOHLMANN,LGREINER,PDOMC237NGUEZDEMARC237A,GREENCHEM2010,12,2240224534YSIMEC243,JVSINISTERRA,ARALCC181NTARA,GREENCHEM2009,11,85586235XLIU,YSUN,LAPEREZ,WWEN,MFTONEY,AJHEEGER,GCBAZAN,JAMCHEMSOC2012,134,206092061236YHUANG,XLIU,CWANG,JTROGERS,GMSU,MLCHABINYC,EJKRAMER,GCBAZAN,ADVENERGYMATER2014,DOI101002/ANEM20130188637YZHANG,PWMBLOM,APPLPHYSLETT2011,98,14350438AROSE,PHYSREV1955,97,1538154439MMMANDOC,LJAKOSTER,PWMBLOM,APPLPHYSLETT2007,90,13350440JRIVNAY,SCBMANNSFELD,CEMILLER,ASALLEO,MFTONEY,CHEMREV2012,112,5488551941TSVANDERPOLL,JALOVE,TQNGUYEN,GCBAZAN,ADVMATER2012,24,3646364942ZBHENSON,PZALAR,XCHEN,GCWELCH,TQNGUYEN,GCBAZAN,JMATERCHEMA2013,1,1111711120ANGEWANDTECHEMIE14381ANGEWCHEMINTED2014,53,1437814381C232014WILEYVCHVERLAGGMBHCOKGAA,WEINHEIMWWWANGEWANDTEORG绿色溶剂处理的分子太阳能电池陈小芬刘晓峰MARKABURGERSYEHUANGGUILLERMOCBAZAN摘要使用绿色溶剂2METHF可以制造功率转换效率超过5的高效本体异质结(BHJ)有机太阳能电池。活性层包含具有中间尺寸的分子半导体供体(X2)和可溶性富勒烯衍生物6,6苯基C61丁酸乙酯(PC61BC8)的掺合物。处理溶剂从氯仿转换成2METHF不会对最佳BHJ薄膜的形态和电荷传输性能产生负面影响。通过吸收光谱,原子力显微镜和掠入射广角X射线散射进行的检查显示没有显着的形态改变。这些结果表明,绿色溶剂可成为高性能有机光伏(OPV)大面积印刷的优秀替代品,从而为有机太阳能电池和其他光电子器件的可持续大规模生产开创了新机遇。为了开发以可再生能源和环境保护为核心目标,同时允许使用无毒和化学上可持续的资源进行大规模生产的新技术,需要取得重大进展。13通过溶液处理生产的有机太阳能电池(OSC)是一个恰当的例子。47制作有源层的前景是通过卷对卷制造,这可以最大限度地降低成本和生产能量,并且可以减少柔性和轻量级模块安装成本。8然而,虽然OSC的功率转换效率(PCE)通过改进材料设计914机械观点,1519和器件结构2022稳步增加,绝大多数高具有本体异质结(BHJ)结构的性能器件由氯化和/或芳族溶剂(例如氯苯)沉积出来。这些溶剂被公认为是饮用水中的污染物,并且表现出不同的毒性水平2326值得注意的是,特别是在欧盟,制定了相关法规,将其作为长期消除目标有害和不可持续的化学品和材料。3环保型溶剂尚未用于制造最高效的BHJ混合物。有报道介绍了使用带有侧基的共轭聚合物,这种聚合物增加了在通常极性较高的良性溶剂(如N甲基2吡咯烷酮和醇)中的溶解度28。然而,这些侧基对固态形态的影响程度,例如与富勒烯衍生物的混溶性,尚不清楚。我们认为具有较少延伸结构的分子将成为吸引人的候选者,因为它们相对于它们的大分子对应物具有更高的溶解度,因此它们将探索从绿色溶剂中浇铸活性BHJ。在这里,我们报告使用2甲基四氢呋喃(2METHF)制造PCE约为5的BHJ太阳能电池。2METHF可以从糠醛获得,糠醛来源于农业副产品29,30,它符合从可再生资源寻求的溶剂类别以及利用废物利用有用化学品的概念。此外,2METHF的毒性低于常用的卤代和芳香族溶剂,如氯苯和氯仿()。3CHL312METHF通常被认为是有机合成中的绿色溶剂替代物,包括有机催化和药物化学。3234检查X2作为分子供体似乎是合理的(见分子结构方案1)。这种材料表现出高的热稳定性和结晶性,以及在非极性溶剂中的良好溶解性。此外,在没有溶剂添加剂的情况下,使用来自的X2与6,6苯基丁酸甲酯3CHL61C(PBM)的混合物实现了约65的PCE。其次,在73至46的61CDA(WTWT)组合物范围内,PCE值保持在相似的水平BHJ的表现因此相对抗组成变化36。最初的一组测试表明X2在室温下在2甲基四氢呋喃中的溶解度约为29毫克/毫升,这被证明足以用于厚度超过300纳米的铸膜。关于富勒烯受体,广泛使用的2METHF中广泛使用的PBM的溶解度小61C于1MG/ML,不足以用于旋涂。因此我们研究了双取代BISPCBM和具有较长烷基链的衍生物PB,以及测定的溶解度分别高于15MG/ML和9MG/61C8ML。使用X2BISPCBM筛选器件性能的最初努力表现出相对于X2PB61一贯较差的性能(参见支持信息,图S1)。因此强调检查X2PB混合8C8物。图1从2METHF和CHCL3中得到的5050X2PB混合物的薄膜紫外可61C8见吸收光谱,其中所述溶液含有25MG/ML的总半导体含量。X2PB共混物的吸收光谱由2METHF和图1)在300900NM61C83HL范围内具有几乎相同的特性,这与使用制备的X2PC61BM薄膜观察到3L的结果非常相似36。通过原子力显微镜(AFM)测定的表面粗糙度和膜形态也不受溶剂选择的很大影响(见图S2)。因此这些表征工具在表面特征或薄膜质量的可能变化中没有显示出任何明显的差异,这将是器件制造的有害因素。仅制造二极管以确定2METHF有源层对空穴传输的处理效果。电流密度电压特性(JV)(见图S3),采用空间电荷限制电流(SCLC)的MOTTGURNEY定律确定该层的零场迁移率38。对图2所示结果的分析提供了()和(2METHF)的空穴迁移率。12410SVCM3CHL141065SVCM事实上,由2METHF铸造的薄膜表现出稍高的空穴迁移率,这是用于提取光伏器件中的光诱导电荷载体的理想品质。图2由CHCL3和2METHF制备的X2PB仅有空穴的二极管(25MGML1总61C8浓度,DA5050,WT/WT)的JV曲线。用或2METHF制造的BHJ器件被平行表征以研究光伏特性。我们研3CHL究采用的器件结构是ITO/MOOX/X2PB/CA/AL。对以前的研究36的618研究使我们专注于以6040和5050比率制造X2PB。这两个比率提供61C8具有非常相似特征的设备(表S4)。表1提供了X2PB(5050)的器件特性总结,平均值对应于至少20个器件的检查结果。图3A提供了从展示51的PCE的2METHF获得的最佳装置的电流密度电压特性(JV)。相应地,由加工的性能最好的设备显示出47的PCE。这两种设备在黑暗中3CHL的JV图表显示低泄漏(图S5)。图3B提供了最佳性能器件的外部量子效率(EQE)曲线。如所观察到的,器件在500800NM范围内显示出相似的量子效率,尽管由于尚未理解的原因,具有2METHF的器件在450NM附近显示稍高的量子效率。表1不同浓度(X2PB5050)的不同溶剂处理的器件的光伏特61C8性。溶剂CHCL32096士03072士00262士145432511503072001542474630123士02071士00352士247462METHF20103士02072士00259士2464425123士02072士00255士15148图3A)JV特性,B)由2METHF和制备的薄膜测量的最佳性能的EQE3CHL曲线。掠入射广角X射线散射(GIWAXS)被用来研究混合物中的结构有序性40。图4A,B示出了平面外和平面内的反射轮廓。由2METHF或旋转铸造3CHL的薄膜显示出类似的峰面内方向,在Q18A1时的PP堆积和在面外方向上的烷基链堆积,在Q039A136。使用Q处的(100)峰确定微晶相关长度(CCL)值图4GIWAXS对X2的研究由和2METHF制备的PB共混膜(253CHL61C8MGML1总浓度,DA5050)(A)和(B)面内和面内方向。发现039A1为119NM()和124NM(2METHF)。010)峰面内3L方向的类似分析导致75NM()和6NM(2METHF)的CCL值。这些相似性表明由2METHF和得到的X2的微晶特征是相似的,由此表明两种3CL溶剂在成膜时间范围内组合BHJ组分的能力相似。讨论两个额外的供体分子似乎是合适的,以便开始鉴定能够用环境溶剂进行处理的相关理想分子和体积特征。其中一个例子就是经过深入研究的分子PDTS(FBTTH2)2,它引起了人们极大的关注,并且存在大量的器件优化方案和形态学表征41。为了我们的研究目的,PDTS(FBTTH2)2在2METHF中没有可检测的溶解度,因此是无用的。第二个例子涉及PCDT(PTFU2)2,其包含用于增加在极性溶剂中的溶解度的结构修饰。具体而言,烷基侧链交换为乙二醇侧链,并且联噻吩部分交换为双酚结构单元。42然而,由2METHF制造的PCDT(PTFU2)2PB61C器件没有光电活性(见图S6)。用X射线衍射技术进行的检查表明,薄膜中8C没有结晶的证据(图S7)。因此,在PCDT(PTFU2)2的情况下,包含在分子结构内以提高极性溶剂中的混溶性的分子片段导致体内结晶的阻力。晶体含量是与高性能分子光伏薄膜相关的一个特征。总之,我们已经表明,通过处理来自2METHF的X2PB混合物可以61C8制造功率转换效率超过5的分子太阳能电池。这种溶剂来源于农业副产品,毒性远低于广泛使用的芳香族或卤代烃替代品。供体组分X2的选择基于与PBM的共混物在不存在添加剂或热加工的情况下可在宽的组成范围内良好地61C表现。值得注意的是,与传统的CHCL3作为溶剂相比,X2PB混合物的6182METHF的效率略高。虽然使用卤化芳香族溶剂处理时非常成功,但PDTS(FBTTH2)2由于在极性溶剂中的溶解度限制而不适用。在PCDT(PTFU2)2的情况下,包含用于帮助溶解的结构组分导致对结晶的抗性,这是我们发现对于获得有用的分子BHJ形态学重要的特征。总之,这些发现为考虑批量生产有机太阳能电池和其他光电子器件开辟了新的机会。它还强调,大量的分子设计可能不是打开环境友好加工的基本必要条件。收到日期2014年9月18日网上发布2014年11月11日关键词绿色化学功率转换分子太阳能电池有机半导体可持续化学1JHCLARK,VBUDARIN,FEIDESWARTE,JJEHARDY,FMKERTON,AJHUNT,RLUQUE,DJMACQUARRIE,KMILKOWSKI,RODRIGUEZ,OSAMUEL,SJTAVENER,RJWHITE,AWILSON,GREENCHEM2006,8,8538602ESBEACH,ZCUI,PTANASTAS,ENERGYENVIRONSCI2009,2,103810493JSHERMAN,BCHIN,PDHUIBERS,RGARCIAVALLS,TAHATTON,ENVIRONHEALTHPERSPECT1998,106,2532714XGUO,MZHANG,CCUI,JHOU,YLI,ACSAPPLMATERINTERFACES2014,6,819081985KSCHEN,HLYIP,CWSCHLENKER,DSGINGER,AKYJEN,ORGELECTRON2012,13,287028786DJBURKE,DJLIPOMI,ENERGYENVIRONSCI2013,6,205320667IBURGUESCEBALLOS,FMACHUI,JMIN,TAMERI,MMVOIGT,YNLUPONOSOV,SAPONOMARENKO,PDLACHARMOISE,MCAMPOYQUILES,CJBRABEC,ADVFUNCTMATER2014,24,144914578RSNDERGAARD,MHSEL,DANGMO,TTLARSENOLSEN,FCKREBS,MATERTODAY2012,15,36499YJCHENG,SHYANG,CSHSU,CHEMREV2009,1095868592310BCARSTEN,FHE,HJSON,TXU,LYU,CHEMREV2011,111,1493152811JCHEN,YCAO,ACCCHEMRES2009,42,1
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:绿色溶剂处理的分子太阳能电池
链接地址:https://www.renrendoc.com/p-9676044.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!