外文翻译--可控注塑成型的发展趋势  英文版.pdf_第1页
外文翻译--可控注塑成型的发展趋势  英文版.pdf_第2页
外文翻译--可控注塑成型的发展趋势  英文版.pdf_第3页
外文翻译--可控注塑成型的发展趋势  英文版.pdf_第4页
外文翻译--可控注塑成型的发展趋势  英文版.pdf_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1Copyright1999byASMEProceedingsofMaterialsProcessingSymposium:1999ASMEInternationalMechanicalEngineeringCongress&ExpositionNovember14-19,1999,Nashville,TennesseeTOWARDSCONTROLLABILITYOFINJECTIONMOLDINGDavidKazmerDepartmentofMech.&Ind.EngineeringUniversityofMassachusettsAmherstDavidHatchDepartmentofMech.&Ind.EngineeringUniversityofMassachusettsAmherstABSTRACTProcesscontrolhasbeenrecognizedasanimportantmeansofimprovingtheperformanceandconsistencyofthermoplasticparts.However,nosinglecontrolstrategyorsystemdesignhasbeenuniversallyaccepted,andmoldingsystemscontinuetoproducedefectivecomponentsduringproduction.Thecapabilityoftheinjectionmoldingprocessislimitedbythethermalandflowdynamicsoftheheatedpolymermelt.Thispaperdiscussessomeofthedifficultiesposedbycomplexanddistributednatureoftheinjectionmoldingprocess.Theflowandthermaldynamicsoftheprocessareanalyzedwithrespecttotransportandrheology.Then,twonovelprocessingmethodsaredescribedtoenablein-cycleflow,pressure,andthermalcontrol.Simulationandexperimentalresultsdemonstrateeffectivenessoftheseinnovationstoincreasetheconsistencyandflexibilityinpolymerprocessing.Suchsystemdesignchangessimplifytherequisitecontrolstructureswhileimprovingtheprocessrobustnessandproductivity.INTRODUCTIONInjectionmoldingiscapableofproducingverycomplexcomponentstotightspecifications.Theprocessconsistsofseveralstages:plastication,injection,packing,cooling,andejection.Ininjectionmoldinganditsvariants(coinjection,injectioncompression,gasassistmolding,etc.),thermoplasticpelletsarefedintoarotatingscrewandmelted.Withahomogeneousmeltcollectedinfrontofthescrew,thescrewismovedforwardaxiallyatacontrolled,time-varyingvelocitytodrivethemeltintoanevacuatedcavity.Oncethemeltissolidifiedandthemoldedcomponentissufficientlyrigidtoberemoved,themoldisopenedandthepartisejectedwhilethenextcyclesthermoplasticmeltisplasticizedbythescrew.Cycletimesrangefromlessthanfoursecondsforcompactdiscstomorethanthreeminutesforautomotivecomponents.Controlofinjectionmoldingissignificantlychallengedbythenonlinearbehaviorofthepolymericmaterials,dynamicandcoupledprocessphysics,andconvolutedinteractionsbetweenthemoldgeometryandfinalproductqualityattributes.Arevisedsystemsviewofthemodernconventionalinjectionmoldingprocess1ispresentedinFig.1.Themachineparametersareindicatedontheleftsideofthefigure,andsomecommonmoldedpartmeasuresofqualityarelistedontheright.Inthisfigure,theprocessisdecomposedintofivedistinctbutcoupledstages.Theoutputofeachstagenotonlydirectlydeterminestheinitialconditionsofthenextstage,butalsoinfluencessomeofthefinalqualitiesofthemoldedpart.BarrelTemp1000PLASTICATIONINJECTIONPACKINGCOOLINGEJECTIONPROCESS/PARTQUALITYMeltPressureThermoplasticPelletsScrewPres0.02ScrewRPM0.5DistortionDimensionsClarityEconomicsResid.StressIntegrityEjectedPartRelaxationSolidifiedLayerDevelopmentStrengthAppearanceResidenceTimeMeltVolumeMeltTempMeltQualityInjectionVelocityProfile0.02MaximumInjectionPressure0.1PackingPressureProfile0.2PackingTime0.01MeltViscosityInletPressureFlowRateMoldCoolantTemperature200CoolingTime0.01MeltFrontVelocityMeltPresMeltDensityMeltTempSolidifiedLayerDevelopmentClampTonnageSolidifiedLayerDevelopmentCycleTimePartTempPartStrainPartStressEjectionStroke0.02EjectionVelocity0.01FlashMoldFailureShotSize0.02MACHINEINPUTSQUALITYATTRIBUTESSTATEVARIABLESFigure1:SystemsviewoftheinjectionmoldingprocessThincavityfillingofpolymermeltcorrespondstocreepingflow(Re1)surroundingahotcoreregion2.Asanexample,considerareferencevelocityof10cm/sec,referencethicknessof3mm,andaviscosityof100PaSeconds.TheReynoldsnumberbasedonthiscaseisverysmall,(10-3),indicatingthevalidityofthehighlyviscouscreepingflowassumption.Furthermore,theflowregionsareconsideredfullydeveloped,andboththeunsteadyandthegravitationalforceeffectscanbeignoredduetonegligiblelocalacceleration.Ontheotherhand,thethermaldiffusivity,2Copyright1999byASME=k/Cp,oftypicalpolymermeltsis(10-3)cm3/sec,andthekinematicviscosity,=/=103cm2/sec;hence,thePrandtlnumberisabout(106)andPecletnumber,Pe=Re*Pr,is(103).Usingtheseassumptions,themass,momentum,andenergyequationsreducetothefollowingformsintheCartesiancoordinatesystem:()()0=+wzvxtrrr(1)xPzvz=h(2)222ghr&+=+zTkxTvtTCp(3)wherezandxarethethicknessandstreamwisedirections;visthevelocitycomponent;Pisthepressure;histheshearviscosity;r,Cp,andkarethethermalproperties;g&istheshearrate,and2gh&istheviscousheatingterm.Thesolutionofthepressurefieldininjectionmoldingisobtainedbycouplingthemassandmomentumequations.Generally,themassequationprovidesaconvergencecriterionforflowrateaboutwhichthemomentumequationisiterativelysolvedtoproduceanaccuratepressurefield.Foreachinstantoftime,allthenodalpressuresonthemesharesolvedsimultaneously.Iterationisrequiredtoupdatetheshearrate,viscosity,andflowrateestimatesuntilfullconvergenceisachieved.Foracompressibleflow,thenetmassfluxmustequalanymassgainsorlosseswithintheelement3.Thenecessarysystemofequationscanbedeveloped,assembled,andsolvedusingaconventionalGalerkinformulationforafixedmeshandtransientmeltfront.Suchasimulationhasbeendeveloped,andwillbeutilizedinassessingstrategiesforprocessdevelopmentalongwithexperimentalvalidation.PROCESSDEVELOPMENTAnoverviewofinjectionmoldingcontrolisshowninFig.2.Attheinnermostlevel,onlythemachineactuatorsareregulated.Thislevelofcontrolwillensureproperexecutionoftheprogrammedmachineinputs(Fig.1).Atthesecondlevel,statevariablessuchasmelttemperatureandmeltpressurearecontrolledtotrackpre-specifiedprofiles.Thiswillprovidemoreprecisecontrolofthestateofthemelt.Attheoutermostlevel,themachineinputsareadjustedtoimprovethequalityofthepartthroughbettersetpointsgivenqualityfeedback.MachineActuatorsProcessMachineControlSetPointControlStateVariableControlMachineFeedbackQualityFeedbackStateVariableFeedbackPartAttributesMachineInputsFigure2:SystemdiagramofinjectionmoldingcontrolWhilemachinecontrolisimportant,itisthepolymerstate(pressure,temperature,andmorphology)whichdirectlydeterminesthemoldedpartquality4,5.Assuch,thispaperfocusesonclosingtheloopbetweenthemachineparametersandthepolymerstate.Ifachieved,theseadvancedcontrolstrategieswouldprovideincreasedmoldedpartqualityandconsistency.CavityPressureControlAfundamentalstatevariablethatcanberegulatedduringthemoldingcycleiscavitypressure.Closed-loopcontrolofcavitypressurecouldautomaticallycompensateforvariationsinmeltviscosityandinjectionpressuretoachieveaconsistentprocessanduniformsetofproductattributes6.Mannintroducedoneofthefirstpressurecontrolschemesbyusingmodulatedpressurereliefvalves7,andAbuFaradevelopedaprocesscontrolmodelbyrelatingthecavitypressureresponsetoopen-loopperturbations8.Srinivasanlaterusedthesemodelstoproposealearningcontrollerforclosed-loopcavitypressurecontrol9.Adaptivecontrolmethodshavealsobeenproposedtotrackcavitypressureprofileatusuallyonelocationinthemold10-12.Unfortunately,cavitypressurecontrolsuffersfromthelackofasystematicmethodofdeterminingthepressureprofile.Inaddition,itishandicappedbytheabsenceofappropriateactuatorsfordistributedpressurecontrol,asconventionalmoldingmachinesareequippedwithonlyoneactuator(thescrew)whichdoesnotallowsimultaneouscavitypressurecontrolatmultiplepointsinthemold.ConsiderthemelttransportsysteminaconventionalcoldrunnermoldasshowninFig.3.Itisevidentthatthegeometryis“hard-wired”intothemold.Therunnerlocationsarefixedandthegatedimensionsarealsofixed.Theresultingpressuredistributioncannotbecontrolledwithoutre-toolingmoldsteel.Figure3:TypicalPackingPressureDistributionToinvestigatethecontrollabilityoftheinjectionmoldingprocess,ahalf-factorialdesignofexperiments13wasperformedtodeterminethemaineffectsbetweenthecriticalprocessparametersandthepartdimensions:3Copyright1999byASME=ScrewSpeedeTemperaturVelocityPressureLLL10.018.005.023.000.029.018.051.002.043.010.057.0321(4)Inthisequation,themachineparametershavebeenscaledtotherangeof0to1,indicativeofthemaximumfeasibleprocessingrangeforthisapplication.Theresultingcoefficientsofthelinearmodelareactualchangeinpartdimensionsmeasuredinmm.Itshouldbenotedthatoncetoolingiscompleted,thedimensionalchangesavailablethroughprocessingarequitelimitedthoughfunctionallysignificant.Theprimaryconclusionthatshouldbedrawnfromeq.(4),however,isthatallthedimensionsreactsimilarlytochangesintheprocesssettings.Thus,themoldingprocessbehavesasaonedegreeoffreedomprocessinwhichonlyonequalityattributeiscontrollable.OneofNamSuhsaxioms14ofdesignstatesthat“independenceoffunctionalrequirementsshouldbemaintained.”Thisaxiomwasappliedtodevelopmultipledegreesoffreedomforcontrolofmeltflowandpressureinthemoldcavity.AsshowninFig.4,thevalvesmetertheflowofmeltfromtherunnersintothemoldcavity.Thepressuredropandflowrateofthemeltisdynamicallyvariedbytheaxialmovementofeachvalvestemwhichcontrolsthegapbetweenthevalvestemandthemoldwall.Byde-couplingthecontrolofthemeltatdifferentvalvestempositions,meltcontrolateachgatecanoverridetheeffectsofthemoldingmachineandprovidebettertimeresponseanddifferentialcontrolofthemelt.Eachvalveactsasanindividualinjectionunit,lesseningdependencyonmachinedynamics.Forclosedloopcontrol,manifoldpressuretransducerswereusedintherunnerdropsinsteadofinthecavity.Thisimplementationnotonlyprovideslowercostandgreaterreliability,butalsorendersaconventionalappearanceforthesystem.MeltInletValve1Valve2Cavity1Cavity2P1P2Figure4:DynamicFlowRegulationDesignTheresultingcontrollabilityoftheinjectionmoldingprocessisdemonstratedinFig.5wheremultiplepressureprofilescanbemaintainedinthemoldcavityofasinglepart.Inthesamecycle,threedifferentmagnitudesofmeltpressurewereexertedatdifferentgatesinthesamemoldcavity.ThecontrolpressurefortheholdingstageatGate1is41.4MPa(6000psi.),Gate2is41.4MPa(6000psi.),Gate3is20.7MPa(3000psi.),andGate4is62.1MPa(9000psi.).Inconventionalinjectionmolding,themeltpressurewouldbethesameatallgates.Thislevelofprocesscontrolhasnotpreviouslybeenachievedbyanymoldingtechnologythusfar.Eachgatecanexertaspecificholdingpressure.010203040506070024681012Time(sec)Figure5:DynamicFlowRegulationDesignThematerialshrinkageanddimensionschangeatdifferinglocationsinthepartbasedonthepressurecontoursandhistoriesaroundthegates.Theabilitytochangeindividualdimensionsorotherqualityattributeswithoutre-toolingmoldsteelprovidessignificantprocessflexibility.Itispossibletoaugmenteq.(4)withtheadditionaldegreesoffreedomandre-examinethecontrollabilityofthethreepartdimensions:+=P4P3P2P1ScrewSpeedeTemperaturVelocityPressureL3L2L121.000.002.000.016.000.017.010.000.060.031.000.001.003.002.001.000.005.009.003.001.008.005.002.0(5)Therearetwosignificantimplicationsofthisresult.First,theclosedloopcontrolofcavitypressureshassignificantlyreducedthedependenceofpartdimensionsonmachinesettings,asevidencedbythereductioninthemagnitudeofcoefficientsfortheprimarymachinesettings.Thiseffecthasalsobeenevidencedbyreductionsinthestandarddeviationsofmultiplepartdimensionsbyanaveragefactoroffive,resultinginanincreaseintheprocesscapabilityindex,Cp,fromlessthan1tofarbeyond2.Second,thesecondmatrixineq.(5)isevidenceoftheimproveddimensionalcontrollabilityprovidedbythedynamicregulationofthecavitypressuredistribution.Ingeneral,changingthecavitypressureatthegateclosesttoadimensionprovidesthemajoreffectonpartdimensions.Additionally,independentcontrolofthevalvestemsprovidesthecapabilitytovarydimensionsatonelocationwithoutinterferingwithdimensionsatanotherlocation.Thisflexibilitydoesnotexistin4Copyright1999byASMEconventionalmoldingbecauseholdpressurechangesintendedtoinfluenceoneareaofthepartcanbetransmittedtootherareasofthepartthroughthestaticfeedsystem.Itshouldbenoted,however,thatthetotalmagnitudeofdimensionalchangeavailablewithdynamicpressureregulationisapproximatelythesameasforconventionalmolding.Theseresultsmayhaveasignificantimpactontheproductandtoolingdevelopmentprocess.Currently,numericalmoldfillingsimulationsandexpertjudgmentsarecombinedtoestimatetheprocessbehaviorandmakecriticaldesigndecisions.Ifthesedecisionsareincorrect,thentoolingmodificationsmayberequired.Improvedcontrollabilityoftheinjectionmoldingprocesspermitscorrectionformanydesigninaccuraciesduringthemoldcommissioningstagewithoutretooling.Suchachangeinthedevelopmentprocesscouldsubstantiallyreducethetooldevelopmentcosts,shortenthedevelopmentcycle,andhastentimetomarket.Thedescribedprocessisalsosignificantinthatitmovespolymercontrolfromthemoldingmachinetothemolditself.Thisreducesthemoldingmachinetoapolymericpump.Variationsininjectionpressure,flowrates,packpressures,orpacktimesareallcompensatedthroughdynamicpressureandtemperaturecontrol.Themarketrepercussionscouldbesignificant,as1)anoldmachinewithoutclosedloopcontrolcanprovideconsistencyequaltomodernmachines,and2)amoldcommissionedonamoldingmachineintheUnitedStatesisensuredtoproduceconsistentpartsonamoldingmachineoverseas.Themoldbecomesitsownself-containedqualitycontrolmechanism.Assuch,thepotentialproductivityandqualitygainsaresubstantial.TemperatureControlThetypicalheatpathinthecoolingstageofinjectionmoldingisthatheatisconductedfromthehotpolymertothecomparativelycoldmold,thenconductedthroughthemoldtothecoolingline,whereitisconvectedawaybythecoolant.Recentresearchhasattemptedtodynamicallycontrolthethermalandfluidpropertiesofthemeltwithinthemoldingcycle.Whiledynamicpressurecontrolhasbeenprovenfeasible15andisbeingcommercialized,therelativelyslowthermaltransientshavepreventedsimilargainsinthermalmanagement.Thecoolingstageofinjectionmoldingcycleisnotidealforavarietyofreasonsimpactingboththeproductqualityandproductioneconomics.Theprocessphysicsdictatethatthemoldtemperaturemustbelessthanthepolymerheatdeflectiontemperaturesuchthatarigidpartisejected.However,thecoldmoldtemperatureconductsheatfromthehotpolymermelttothecoldmoldduringinjectioncausingthedevelopmentofaskinontheexteriorofthepartandpropagationoffrozenlayerstowardsthecoreofthepart.Thesefrozenlayersincreasetheflowresistance,makingthemoldcavitydifficulttofill.Sincefrozenlayersaredevelopedcontinuouslyduringinjectionandcooling,theylockinvaryinglevelsofstressandorientation.Thisvariationinpolymermorphologyasafunctionofthicknessreducesoptical,structural,andotherpartproperties16-19.Tocompensateforthenegativeeffectsofcoldmoldwalls,manufacturersmayrunthemoldathighermoldtemperatures,highermelttemperatures,higherinjectionpressures,andhigherinjectionvelocities20,21.Alternatively,alowerviscositypolymerorhigherpartwallthicknessmayberequiredwithcostand/orperformancedisadvantages.Alloftheseoptionsnegativelyimpacttheeconomicsofproduction.Infact,theeconomicdriversdictatehighermoldtemperaturesduringinjection(toallowthinpartwallthicknessesandlowinjectionpressures)butlowermoldtemperaturesduringcooling(toallowrapidsolidification).Thisoptimalmoldtemperaturecontrolstrategyisinfeasiblegivencurrentcontrolstrategiesandmaterialtechnologies.Thesizeofthemold,togetherwithitshighheatcapacityandthermalinertia,preventsdynamicclosedloopcontrolofthemoldsurface.Thisstatementisbasedonobjectiveanalysisaswellasobservationofprioracademicandindustrial22-34.Forinstance,Jansen35,Chen36,andotherresearchershaveutilizedathermoelectricdevicewithin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论