会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文翻译--基于温激光喷丸中动态应变时效和动态析出的AISI4140钢疲劳行为的改进 英文版.pdf外文翻译--基于温激光喷丸中动态应变时效和动态析出的AISI4140钢疲劳行为的改进 英文版.pdf -- 5 元

宽屏显示 收藏 分享

页面加载中... ... 广告 0 秒后退出

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

KimUniversitogy8WarmlasershockpeeningWLSPisathermomechanicaltreatmenttechniquecombiningtheadvantagesoflasershockpeeninganddynamicstrainagingDSA.ThroughDSA,WLSPofsteelincreasesthedislocationdensityandstabilizesthedislocationstructurebypeeningLSPhasbeensuccessfullyusedtoimprovetheafterLSPanddeeprollingDR.Hu5investigatedLSPofAISI1045steelbyANSYS,validatedbyexperiment.Chu6comparedthemicrostructure,hardnessandresidformationofahighdensityemartensitephase.effectoffatiguelifeimprovementbyLSPislimited.Thus,itisveryimportanttostabilizethemicrostructureandthecompressiveresidualstressgeneratedbyLSP.DynamicstrainagingDSAandDPcanbothimprovethemicrostructurestabilityofmetallicmaterials.DSA12,13,thediffusionofCcarbonandNnitrogenatoms⇑Correspondingauthor.Emailaddressgjchengpurdue.eduG.J.Cheng.Availableonlineatwww.sciencedirect.comActaMaterialia5920111014–1025fatigueperformanceofmetalliccomponents1.Bygeneratingaworkhardenedlayerandintroducingcompressiveresidualstressinthematerialsurfacethespeedofcrackinitiationandpropagationduringcyclicloadingissloweddown,whichresultsinafatigueperformanceimprovement.LSPisaneffectivewaytoimprovesurfacehardness,fatigueperformance,corrosionresistanceandwearresistance2.Steelsarewidelyusedinindustry.LSPofsteelhasbeenextensivelystudiedintheliterature.Forexample,Nikitin3,4comparedthenearsurfacemicrostructurechangeandfatiguelifeimprovementofAISI304stainlesssteelHowever,thecompressiveresidualstressgeneratedbysurfaceprocessingtechniquesSP,LSP,DP,etc.isnotstableduringcyclicloading7,8,especiallyathightestingtemperatures3,4,9,10.Forexample,Altenbergeretal.11investigatedthethermalstabilityofthecompressiveresidualstressandsurfacenanostructuregeneratedinAISI304stainlesssteelandTi64alloybydynamicprecipitationDPandLSPbyinsitutransmissionelectronmicroscopyTEMstudy.Itwasobservedthatcompleteresidualstressrelaxationat550–600C176Cwasrelatedtothethermalinstabilityofthenearsurfacemicrostructure.Inthisway,thepinningofmobiledislocationsbycarbonatoms.Inaddition,WLSPgeneratesnanoscalecarbideprecipitatesthroughstraininducedprecipitation.Thecarbideprecipitatesstabilizethemicrostructurebydislocationpinning.Thisresultsinhigherstabilityofthedislocationstructureandthusimprovesthestabilityofthecompressiveresidualstress.InthisstudythemechanismoffatigueperformanceimprovementinAISI4140steelbyWLSPisinvestigated.ItisfoundthatmicrostructuresformedafterWLSPleadtoahigherstabilityofdislocationstructuresandresidualstress,whicharebeneficialforfatigueperformance.C2112010ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.KeywordsWarmlasershockpeeningAISI4140steelDynamicstrainagingDynamicprecipitationCarbide1.IntroductionAsasuperiorsurfaceprocessingtechnique,lasershockualstressgeneratedbyLSP,DRandshotpeeningSPonHadfieldmanganesesteel.InChusstudyitwasfoundthatLSPresultedinalargehardnessincreaseduetotheFatigueperformanceimprovementstrainaginganddynamicprecipitationChangYea,SergeySuslovb,BongJoongaSchoolofIndustrialEngineering,PurduebSchoolofMaterialsEngineeringandBirckNanotechnolReceived30July2010receivedinrevisedformAvailableonlineAbstract13596454/36.00C2112010ActaMaterialiaInc.PublishedbyElsevierLtd.Alldoi10.1016/j.actamat.2010.10.032inAISI4140steelbydynamicduringwarmlasershockpeeningb,EricA.Stachb,GaryJ.Chenga,⇑y,WestLafayette,IN47906,USACenter,PurdueUniversity,WestLafayette,IN,USA13October2010accepted13October2010November2010www.elsevier.com/locate/actamatrightsreserved.todislocationcoresinthetemperaturerange150–300C176C,isanimportantstrengtheningmechanism14insteel.InDSAtheinteractionbetweendislocationsandsoluteatomsresultsinrepeatedpinningofdislocationsandthusleadstoenhancedworkhardening13,15.AttheDSAtemperaturethesoluteatomscarbonandnitrogenmigratetodislocationcores,whichformsocalledCottrellclouds16insteel.TheCottrellcloudsexertapinningforceondislocationsandinhibitdislocationmovementduringplasticdeformation.Forplasticdeformationtocontinue,newmobiledislocationsmustbegenerated.Thisleadstodislocationmultiplicationandresultsinahigherdislocationdensityandamoreuniformdislocationarrangement.SubstantialeffortshavebeenmadetotakeadvantageofDSAintreatingsteel.Forexample,Chen17improvedthefatigueperformanceofAISI304stainlesssteelbyplasticdeformationattheDSAtemperature.Kerscheretal.18increasedthefatiguelimitofSAE52100steelbyTMTattheDSAtemperature,andidentifiedtheoptimaltemperature335C176Cthatledtobestfatigueperformanceimprovement.Huangetal.19comparedthefatigueperformanceofSA533B3steelatroomtemperatureand300C176Candfoundthatthebetterfatigueperformanceat300C176CwasacombinedeffectofDSAandtheformationofcarbideprecipitatesduringcyclicloading.DynamicprecipitationduringhotdeformationisalsoknownasstraininducedprecipitationSIP.Dynamicprecipitationdiffersfromstaticprecipitationinthattheformerresultsintheformationofnanoscaleprecipitatesdynamicallyduringwarmdeformation.Indynamicprecipitationthedislocationsgeneratedbydeformationactasfavorablenucleationsitestogrowprecipitatesdynamically.Comparedwithstaticprecipitation,dynamicprecipitationismoreefficientinstrengtheninginthatittakesamuchshortertimetoreachpeakhardness.Tiittoetal.20investigatedtheeffectofdynamicprecipitationinsteelonthehotflowbehaviorofalloysteel.Itwasfoundthatthepeakpinningforceresultingfromdynamicprecipitationleadstoapeakintheflowcurveduringhotdeformation.Asdiscussedearlier,DSAcanincreasethedislocationdensitygeneratedbydeformation.Thehighdensitydislocations,inturn,canprovidenumerouspotentialnucleationsitesfordynamicprecipitation.Thus,theeffectivenessofDPcanbeimprovedthroughDSA.Liaoetal.21proposedanucleationmechanismtoexplaintheultrahighdensenanoprecipitationduringWLSP,andfoundthatdislocationsafterhighstrainratedeformationandelevatedtemperaturesarethetwomostimportantfactors.Thenucleationmodelwasvalidatedbyexperiments.Theperformanceofsurfaceprocessingtechniques,includingLSP,DRandSP,canbeimprovedbytakingadvantageofDSAandDP.Matlock15comparedtheeffectofDRofAISI4140steelatroomtemperatureand260C176CDSAtemperature.ItwasfoundthatDRattheDSAtemperaturesignificantlyincreasedthecorehardnessC.Yeetal./ActaMaterialiaandalsoledtoamorestabledislocationstructureandthusimprovedthefatigueperformance.HightemperatureDRofaluminumalloyswasalsoproventobemoreeffectiveinfatigueperformanceimprovementthanroomtemperatureDRbyJuijerm22–24.Harada25comparedshotpeeningofspringsteelatroomtemperatureandelevatedtemperatures100C176C,200C176C,300C176Cand400C176C.ItwasfoundthatSPattheoptimaltreatmenttemperature200C176Ctendstoincreasethenearsurfacecompressiveresidualstressmagnitudeandhardnessduetothedecreaseinflowstressathightemperature.Inaddition,itwasfoundthatthemagnitudeoftheresidualstressgeneratedbySPdecreasedduetorecoveryattreatmenttemperatureshigherthan200C176C.ThoughitwasnotmentionedbyHarada,theincreaseinhardnessat200C176CintheDSAtemperatureregimecouldalsobepartiallyattributabletoDSA,whichledtothepinningofdislocationsbyCottrellcloudsandresultedinahigherdislocationdensityandgreaterworkhardening.InthewarmshotpeeningworkonAISI4140steelcarriedoutbyWick26andMenigandSchulze27itwasdemonstratedthatSPatelevatedtemperaturearound300C176Cimprovedtheresidualstressstabilityandledtobetterfatigueperformance.AccordingtoWick26,inthewarmpeeningsamplesstaticanddynamicstrainagingoccursimultaneouslyduringandafterwarmpeening,whichleadstoahighersurfacehardness.Inaddition,DSAinwarmshotpeeningleadstotheformationofahighdensityofdislocationsandmoreuniformdislocationarrangement,whichcontributetoahigherresidualstressstabilityduringcyclicloading.AsasuperiorsurfaceprocessingtechniqueLSPcanalsotakeadvantageofTMTbytreatingsteelintheDSAtemperatureregime150–300C176C.Thus,itisofinteresttoinvestigatetheeffectoftreatingtemperatureonthefatigueperformanceimprovementbyLSP.Inapreviousstudybyourgroup28itwasfoundthatwarmlasershockpeeningWLSPcansignificantlyimprovethestabilityofthecompressiveresidualstressinAA6061alloysthroughthepinningofdislocationsbytheformationofahighdensityofnanoscaleprecipitatesgeneratedbydynamicprecipitation.InthisworkWLSPofAISI4140steelwascarriedoutanditseffectsonfatigueperformancewerestudied.ThemicrostructureofthesamplestreatedafterLSPandWLSPwascharacterizedbytransmissionelectronmicroscopyTEM.TheresidualstressanddislocationdensityweremeasuredbyXraydiffraction.2.Experiments2.1.MaterialsSampleswerecutandmachinedfromaAISI4140steelplatewiththechemicalcomposition0.41C,0.21Si,0.83Mn,0.025P,0.027S,0.91Cr,0.18Mo,theremainderFeallwt..Thesampledimensionswere76.2C210C22.38mm.BeforeLSPthesampleswereaustenitizedfor20minat850C176C,oilquencheddownto25C176C,5920111014–10251015temperedat450C176Cfor2handcooledinavacuumfurnace.ThisprocedureresultsinsteelwithaVickershardnessof310VHandamicrostructureoftemperedmartensiteFig.4.2.2.WarmlasershockpeeningexperimentsAschematicoftheWLSPprocessisshowninFig.1.BK7glasswasusedastheconfiningmediumduetoitshighshockimpedanceandhighmeltingpoint,makingitsuitableforLSPatelevatedtemperatures.Inthiscasewatercannotbeusedastheconfiningmediumduetoitslowevaporationpoint.Inpractice,siliconeoiltype710couldalsobeusedforconfinement,duetoitshighvaporpointC24300C176Ccomparedwithwater.Thinaluminumfoilisusedasanablativecoatingmaterialtoprotectthetargetmaterialfromsurfacemelting.TheworkingtemperaturesforWLSParemanipulatedusingahotplate.Athermometerisusedtomonitorthesampletemperature.Thelaserbeamsizeusedis1mm.Theoverlapratiois75.FurtherdetailsoftheWLSPexperimentcanbefoundinYeetal.28.2.3.Characterization2.3.1.MicrohardnessThemicrohardnesschangeofthesamplesbeforeandafterLSPorWLSPismeasuredusingaLecoM400Hmicrohardnesstestmachinewitha200gloadanda10sFig.1.Schematicofthelasershockpeeningprocess.1016C.Yeetal./ActaMaterialiaholdingtime.Theaverageoffivemeasurementswasusedforeachdatapoint.2.3.2.ResidualstressABrukerD8DiscoverXraymicrodiffractionsystemwasusedtomeasuretheresidualstressofthesample.TheXraycollimatorusedinthisworkis0.1mmindiameter.The{220}peakwasusedforstressanalysis,whichcorrespondstoa2hangleof123.916C176intheunstressedstate.Theinterferencelinesofthesteelphaseweredeterminedat11wanglesfromC050C176to50C176usingCoKa1radiationandanalyzedbythesin2wmethod29.TheXraypeakbroadeningswereevaluatedfromthefullwidthathalfmaximumFWHMintegralvaluesafterremovaloftheKa2signal.TheFWHMvalueatthe90C176XrayincidenceangleoftheBraggdiffraction{220}peakswasusedasameasureoftherelativedislocationdensity29,orworkhardeningrate.TomeasurethecoreresidualstressthematerialwasremovedlayerbylayerbyanelectrolyticpolisherProtoManufacturingInc..TheelectrolyticpolishingmediumwastheA1solutionfromProtoManufacturingInc.Toinvestigatethethermalstabilityofthecompressiveresidualstressthesampleswereputinafurnaceat350C176Cfordifferentannealingtimesandthentheresidualstressmeasured.Toinvestigatethecyclicstabilityofthecompressiveresidualstresstheresidualstresswasmeasuredafterdifferentnumbersofroundsofcyclicloading.2.3.3.TemTheTEMsampleswerepreparedbythefocusedionbeamFIBliftoutmethod30inaFEINovaLab200FIBsystem.TEMwascarriedoutinanFEITitanoperatedat300keV.2.3.4.FatiguetestA100KNMTSservohydraulicfatiguetestingmachinewasusedtocarryoutthethreepointbendingfatiguetest,inloadcontrolmode.Theloadingprofileisasinewavefunctionwithafrequencyof5Hz.ThestressratioRis0.1forallthefatiguetestsi.e.Rrmin/rmax,whererministheminimumstressandrmaxisthemaximumstress.Themaximalbendingstresswascalculatedbyr¼3PL2bh2,wherePistheappliedload,Listhespanforthebendingfatiguetestsetup,bisthewidthofthespecimenandhisthethicknessofthespecimen.Allthetestswerecarriedoutatroomtemperatureandinalaboratoryenvironment.3.Resultsanddiscussion3.1.Processconditionsforwarmlasershockpeening3.1.1.LaserprocessingconditionOneofthemostimportantparametersinLSPislaserintensity,whichcontrolstheshockpressure.InthisstudyBK7glassshockimpedance1.44e6gcmC02sC0131wasusedastheconfiningmedium,whichhasamuchhighershockimpedancecomparedwithwatershockimpedance0.1655e6gcmC02sC0132.AccordingtoFabbroetal.33thelaserinducedshockpressurecouldbeestimatedasPðGPaÞ¼001ffiffiffiffiffiffiffiffia2aþ3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZðgcm2sÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiI0ðGWcm2Þp,whereaisthatportionofabsorbedenergycontributingtothethermalenergyoftheplasmaandZ2Z¼1Z1þ1Z2isthereducedshockimpedancebetweenthetargetmaterialsteel4140shockimpedance3.96gcmC02sC01,estimatedasZqD,whereqisthematerialdensityandDistheshockvelocity34andtheconfiningmedium.FromourcalculationstheshockpressureusingBK7astheconfinementwasabout2.7timeshigherthanthatusingwaterastheconfinement.Inthisstudythelaserintensitiesusedwerefrom1.5to4GWcmC02witha0.5GWcmC02interval.Itwasfound5920111014–1025thattheconfiningmediumBK7glasscrackedatlaserintensitiesabove4.0GWcmC02.TheresidualstressesforstressareveryclosebetweenLSPandWLSP,i.e.WLSPFig.2.SurfaceresidualstressesforLSPandWLSP250C176Catdifferentlaserintensitiesandcorrespondingpeakplasmapressures.Fig.3.Hardnessatdifferenttemperatureslaserintensity4GWcmC02.C.Yeetal./ActaMaterialia5920111014–10251017laserintensitiesfrom1.5to4.0GWcmC02underLSPandWLSPconditionsweremeasuredFig.2.TheestimatedpeakplasmapressureatdifferentlaserintensitieswerealsoplottedbasedonFabbrosmodel33seeFig.2.ItwasfoundthattheresidualstressmagnitudesincreasedalmostlinearlywithincreasinglaserintensityforbothLSPandWLSPfrom1.5to4.0GWcmC02.Inaddition,theresidualstressmagnitudesforLSPandWLSP250C176Careverycloseatalllaserintensities.Thecompressiveresidualstressmagnitudesreacharound500MPaforbothLSP501MPaandWLSP519MPaat4GWcmC02.Whileahighmagnitudeofcompressiveresidualstressisbeneficialforfatigueperformance,4GWcmC02waschosenasthelaserintensityinthefollowingexperimentsinthisstudy.AccordingtothestudybyJuijerm23,themagnitudeoftheresidualstressgeneratedbydeeprollingathightemperature250C176Cismuchlowerthanthatatroomtemperature50comparedwith260MPa.ThusitisworthmentioningthatthemagnitudesofcompressiveresidualFig.4.Initialmicrostructureofquenchedandtemperedsteel4140withoutprecipitates.didnotreducethemagnitudeofresidualstresscomparedwithLSP.However,whatismoreimportantisthestabilityofresidualstress,whichwillbeaddressedlater.3.1.2.WLSPworkingtemperatureItisnecessarytodeterminetheoptimalworkingtemperatureforWLSPintermsofcompressiveresidualstressmagnitudeandhardnessimprovement.AccordingtowarmSPworkonAISI4140steelbyMenigandSchulze27anoptimalpeeningtemperatureof300C176Cwasidentified.ConsideringthattheDSAtemperatureofmediumcarbonsteelisbetween150C176Cand300C176C,temperaturesfrom100C176Cto350C176Cwithanintervalof50C176Cweretestedinthisstudy.ItwasfoundthatLSPatalltemperaturesleadstoanimprovementinhardnesscomparedwithLSPatroomtemperatureseeFig.3.Forallexperimentsbelow300C176Cthehardnessincreaseswithincreasingtemperature.ThisisbecausehighertemperaturesleadtoahighermobilityofthesoluteatomsandthusmoreefficientDSA17.ThepeeningshowingaretainedmartensiticlathsandbFe3Ccementite
编号:201311171602477079    大小:2.60MB    格式:PDF    上传时间:2013-11-17
  【编辑】
5
关 键 词:
教育专区 外文翻译 精品文档 外文翻译
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:8次
英文资料库上传于2013-11-17

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

教育专区   外文翻译   精品文档   外文翻译  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5