(word)-发展非调质的大截面预硬塑料模具钢外文翻译-其他专业_第1页
(word)-发展非调质的大截面预硬塑料模具钢外文翻译-其他专业_第2页
(word)-发展非调质的大截面预硬塑料模具钢外文翻译-其他专业_第3页
(word)-发展非调质的大截面预硬塑料模具钢外文翻译-其他专业_第4页
(word)-发展非调质的大截面预硬塑料模具钢外文翻译-其他专业_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中文2600字毕业设计论文外文资料翻译学院系专业姓名学号外文出处DEVELOPMENTOFPLASTICMOULD附件1外文资料翻译译文;2外文原文。指导教师评语签名年月日注请将该封面与附件装订成册。附件1外文资料翻译译文发展非调质的大截面预硬塑料模具钢LUOYI,WUXIAOCHUN,MINYONGAN,ZHUZHU,WANGHONGBIN(上海大学材料科学与工程学院,上海200072,中国)摘要为了满足大截面预硬塑料模具钢的需求和能源节约,一种非调质预硬钢正在发展。一个大型温度场用有限元法研究和9号试验钢在实验室中被设计。对它们的微观结构和硬度调查时用在空气中冷却和控制冷却速度的类似的模拟冷却。结果表明,硬度均匀的截面密切相关与预硬钢的贝氏体淬透性,试验钢的硬度在40到43洛氏硬度之间波动在两种冷却条件下。该试验钢比C45钢具有更加良好的加工性能。预硬钢成功的生产在工厂是基于实验室的结果。它的微观结构是贝氏体,在尺寸为460毫米800毫米3200毫米上均匀分布。关键词预硬钢;大截面塑料模具;温度估计;化学成分;微观结构;可加工性。生产上的强烈增长和塑料的消耗已经影响了塑料模具钢材市场而对良好性能的塑料模具钢的需求越来越多。各种系列塑料模具钢材适应不同性能要求,例如耐磨,高硬度,耐腐蚀,韧性,抛光性,纤维化性质,可焊性,可加工性。在现有塑料模具钢材系列中,中低碳合金钢,例如AISIP20中的DIN2738和718(瑞典牌号)长久以来一直被广泛应用着,因为它们的良好的综合性能。P20系列通过调质的形式从钢铁厂的模具生产商生产出来,模具已加工后不需要进行进一步热处理。它通常被称为调质预硬塑料模具钢。预硬塑料模具钢的优势在于模具制造它没有失真的风险,可直接投入运营。然而,调质预硬钢过程复杂和高能源消耗。在规模的塑料行业中,传统的塑料模具QP钢有时可能没有完全淬火或者淬火出现裂纹当它们被用于大的塑料模具时1,2。因此,探讨非调质预硬塑料模具钢为了避免上述的技术和经济缺点3。早在20世纪90年代,150毫米截面的调质预硬塑料模具钢(FT系列)被开发4。在最近十年里,B系列钢诞生和部分代替了低于300毫米截面的P20钢5。实践表明,该非调质过程也可以生产出具有相似的,统一的硬度比的QP塑料模具钢,同时减少生产周期和耗能。本文主要研究大于300毫米截面的预硬塑料模具钢,特别关注成分设计和满足需求的大截面塑料模具钢1实验过程在冷却条件上有很大的差别就是小尺寸试验钢生产在实验室里而大截面硬钢生产在工厂,大截面预硬钢将通过微观结构和性能与试验钢比较区别在相似的冷却条件下。实验过程如图1所示。图1预硬钢的发展进程9号试验钢被冶炼在250公斤的感应炉里,其化学成分(质量分数,)显示在表1里。每个试验钢被锻造直径80毫米,然后用两种方式冷却空气冷却和沙子冷却。切断样品做硬度测试和显微组织观察,尺寸大小为80毫米10毫米。每个样品的硬度与洛氏硬度测定在核心到表面每5毫米处进行,它们的组织在一个尼康LV150光学显微镜下被观察。拉伸样品从在空气冷却中的样品中获得。机械加工性能在切削试验中进行了评估通过测量切削力及切削刀具磨损,分别比较80毫米320毫米的8号试验钢和80毫米310毫米的C45号钢,后者淬火为10的氯化钠和回火。切削刀具是硬质合金刀具YT15化学成分(质量分数,)是79WC,15TIC,6CO,它的新优势被用于各项测试中。当进给速度定为01MM,切削深度改为05MM到03MM每05MM,主切削力被压电式力测量,切削速度分别在39MMIN和785MMIN,在刀具磨损测定中使用了精度为001毫米的工具制造商的显微镜。当进给速度和切削深度固定在01MMR和15MM时,分别首次消减60分钟的切削速度196MMIN再消减35分钟的切削速度34MMIN在刀具后刀面磨损实验中。表1测试钢的化学成分2讨论和结果21对大断面预硬钢冷却速度的模拟预硬钢对塑料模具来说期望很大,然而它的冷却速度减慢由于它的尺寸增大。对于大小为460毫米800毫米3200毫米的钢,就必须知道它的温度场,它可以适当的指导淬透性合金设计。简言之,如果核心和表面的空气冷却速度是已知的,以及相应的试验钢的微观的两个冷却速度相似,大断面预硬钢的硬度将分布均匀。在图2上的曲线B和曲线C通过有限元模拟分别反映了再核心和边缘的大致温度。这些估计的冷却速率提供了参考依据为选择合适的淬透性预硬钢。对上述最快最慢的冷却速率物理模拟,当锻造后冷却速率的控制和空气冷却时,钢的测试温度被测量用K型电热偶。测量的温度显示为曲线A和曲线D。由于潜热是没有考虑到有限元模拟,辐射发射表面系数可能会有所不同,在实际的冷却条件下,控制的冷却速率低于被估计的核心的冷却速率。此外,锻压后测试钢在空气中冷却的冷却速率快于表面的估计速率。根据这一点,控制冷却率和空气冷却率的范围比估计的冷却速率大。结合460毫米800毫米3200毫米块的有限元模拟和试验钢的物理模拟,微观结构,核心和表面的特性可以比较控制冷却速率的测试钢和空气冷却的测试钢。图2测量的冷却曲线和模拟的冷却曲线22化学成分设计当预硬塑料模具钢从模具型腔到制造,其内侧为工作面,这意味着它应该有一个统一的硬度标准。因此,淬透性和整个截面硬度均匀在预硬钢中发挥了重要的作用6。由于传统的预硬钢在淬火冷却的热处理过程中,在一般情况下硬度均匀性与马氏体淬透性密切相关7。然而锻造后,热量与表面的空气转换慢得多比淬火,大截面预硬塑料模具钢很难获得马氏体在整个截面中。但是,如果多边形铁素体转变阻碍贝氏体相变发生在整个截面中,预硬钢硬度可能会略有不同。预硬钢的淬透性在本文中被称为贝氏体淬透性。尽管对于淬火钢来说碳是一个简单又传统的元素,过量的二氧化碳焊接明显有害而且可能影响可加工性。由于这一点,碳含量必须在018到031之间。钼能延缓高温多边形铁素体转化效率而对贝氏体相变的影响不大。特别是“05MOB”设计在低碳素钢中可以得到充分的贝氏体结构在一个很大的冷却速度范围内8。钼含量在01到05之间应该考虑增加其他合金元素以延缓过冷奥氏体的转变。锰,铬也可以增加来增加淬透性,因为它们可以提供最高的BS温度和最低的MS温度,它们具有良好的焊接性。钒已经被选定为控制奥氏体晶粒长大,它的含量为01。3工厂试制预硬钢根据8号钢,预硬钢锻造后尺寸为460毫米800毫米3200毫米。硬度测定20毫米沿460毫米和800毫米的方向分开,它徘徊在37到40洛氏硬度之间。贝氏体的显微结构无论是在核心和表面上看,并没有出现大规模的铁氧体,如图3所示。(A)表面(B)核心图3预硬钢的显微结构4结论核心和表面的冷却速度被估计用有限元模拟和物理模拟在实验室,它提供的数据来选择预硬钢的淬透性。具有良好的贝氏体淬透性钢从实验室中的9号试验钢中选择,它的化学成分是027C195M104CR045MO01V。它比C45钢具有更好的切削性能9。预硬钢成功的生产在工厂是根据实验室里产生的8号钢为基础的。它的组织是贝氏体,它的硬度在37到40洛氏硬度之间在尺寸为460毫米800毫米3200毫米的模具上。参考文献1CHENZAIZHI,MADANGSHENPLASTICMOULDSTEELAPPLICATIONMANUALMBEIJINGTHECHEMISTRYINDUSTRYPRESS,2005INCHINESE2LUOYI,WUXIAOCHUNRESEARCHPROGRESSOFTHEWORKONPREHARDENEDPLASTICMOULDSTEELJHEATTREATMENTOFMETALS,2007,321222INCHINESE3SONGDONGLI,GUJIANFENG,ZHANGWEIMIN,ETALNUMERICALSIMULATIONONTEMPERATUREANDMICROSTRUCTUREDURINGQUENCHINGPROCESSFORLARGESIZEDAISIP20STEELBLOCKSUSEDASPLASTICDIEJTRANSACTIONSOFMATERIALSANDHEATTREATMENT,2004,2557404WUXIAOCHUN,ZHANGJIE,CUIKUNTHEMICROSTRUCTUREANDMECHANICALPROPERTIESOFUNQUENCHEDANDUNTEMPEREDDIESTEELFORPLASTICMOULDJJOURNALOFHUAZHONGUNIVERSITYOFSCIENCEANDTECHNOLOGY,1995,23121INCHINESE5JIANGLAIZHU,WANGJIANGHUIDEVELOPMENTOFANONQUENCHEDNONTEMPEREDBAINITICSTEELFORPLASTICMOULDCONTINUOUSCOOLINGTRANSFORMATIONBEHAVIORAJEGLITSCHF,EBNERR,LEITNERH,EDSPROCEEDINGSOFTHE5THINTERNATIONALCONFERENCEONTOOLINGCLEOBEN19996856SONGDONGLI,GUJIANFENG,PANJIANSHENG,ETALDESIGNOFQUENCHINGPROCESSFORLARGESIZEDAISIP20STEELBLOCKUSEDASPLASTICDIEJJOURNALOFMATERIALSSCIENCEANDTECHNOLOGY,2006,2211397LIUZHUANG,WUZHAOJI,WUJINGZHI,ETALNUMERICALSIMULATIONOFHEATTREATMENTMBEIJINGSCIENCEPRESS,1996INCHINESE8PICKERINGFBPHYSICALMETALLURGYANDTHEDESIGNOFSTEELSMLONDONAPPLIEDSCIENCEPUBLISHERSLTD,19789VETTERP,HIPPENSTIELFANEWPREHARDENEDPLASTICMOULDSTEELASATAILOREDSOLUTIONFORLARGEMOULDSAROSSOM,ACTISGRANDEM,UGUESD,EDSPROCEEDINGSOFTHE7THINTERNATIONALCONFERENCEONTOOLINGCTORINO2006317附件2外文原文(复印件)DEVELOPMENTOFNONQUENCHEDPREHARDENEDSTEELFORLARGESECTIONPLASTICMOULDLUOYI,WUXIAOCHUN,MINYONGAN,ZHUZHU,WANGHONGBINSCHOOLOFMATERRIALSCIENCEANDENGINEERING,SHANGHAIUNIVERSITY,SHANGHAI200072,CHINAABSTRACTINORDERTOMEETTHEDEMANDOFPREHARDENEDSTEELFORLARGESECTIONPLASTICMOULDANDSAVEENERGY,ANONQUENCHEDPREHARDENEDNQPSTEELISDECELOPTHETEMPERATUREFIELDOFALARGEBLOCKISRESEARCHEDBYFINITEELEMENTMETHODSIMULATIONAND9TESTSTEELSAREDESIGNEDINTHELABORATORYTHEIRMICROSTRUCTURESANDHARDNESSAREINVESTIGATEDWHENTHEYAREAIRCOOLEDANDCONTROLCOOLEDATCOOLINGRATESIMILARTOTHESIMULATIONTHERESULTSHOWSTHATTHEHARDNESSUNIFORMITYTHROUGHSECTIONISCLOSELYCORRELATEDTOBAINITICHARDENABILITYFORTHENQPSTEEL,ANDTHEHARDNESSOFSTEEL027C195MN104CR045MO01VFLUCTUATESBETWEENHRC40AND43UNDERBOTHCOOLINGCONDITIONSTHETESTSTEELHASBETTERMACHINABILITYCOMPAREDWITHC45STEEL,ANDTHENQPSTEELISPRODUCEDSUCCESSFULLYINTHEFACTORYBASEDONTHELABORATORYRESULTSITSMICROSTRUCTUREISBAINITE,ANDITISDISTREBUTEDUNIFORMLYTHROUGHTHESIZEOF460MM800MM3200MMKEYWORDSNQPSTEELLARGESECTIONPLASTICMOULDTEMPERATURELESTIMATIONCHEMICALCOMPOSITIONMICROSTRUCTUREMACHINABILITYTHEINTENSIVEINCREASEINTHEPRODUCTIONANDCONSUMPTIONOFPLASTICSHASALSOINFLUENCEDTHEPLASTICMOULDSTEELMARKETWITHITSDEMANDFORINCREASINGAMOUNTSANDGOODAVAILABILITYOFPLASTICMOULDSTEELSVARIOUSSERIALPLASTICMOULDSTEELSAREDEVELOPEDTOFITTHEDIFFERENTPROPERTIESREQUIREMENTS,EG1WEARRESISTANCE,HARDNESS,CORROSIONRESISTANCE,TOUGHNESS,POLISHABILIT,TEXTURIZINGPROPERTIES,WELDABILITY,ANDMACHINABILITYFORCURRENTPLASTICMOULDSTEELFAMILY,THEMEDIUMCARBONLOWALLOYEDSTEELFAMILY,SUCHASAISIP20ANDITSDERIVEDVARIETIESDIN2738AND718SWEDISHGRADEHAVELONGBEENEXTENSIVELYAPPLIEDBECAUSEOFTHEIRGOODOVERALLPROPERTIESASTHEP20FAMILYISDELIVEREDASQUENCHEDANDTEMPEREDFROMTHESTEELWORKSTOMOULDPRODUCERANDNEEDSNOFURTHERHEATTREATMENTAFTERAMOULDHASBEENMACHINED,ITISUSUALLYCALLEDQUENCHEDANDTEMPEREDPREHARDENEDQPSTEELFORPLASTICMOULD1,2THEADVANTAGEOFPREHARDENEDSTEELFORPLASTICMOULDISTHATTHEMOULDMADEOFITDOESNOTHAVETHERISKOFDISTORTIONANDCANBEPUTINTOOPERATIONDIRECTLYHOWEVER,QUENCHEDANDTEMPEREDPREHARDENINGHASPROCESSCOMPLEXITYANDHIGHENERGYCONSUMPTIONWITHINCREASINGDIMENSIONSOFPLASTICSINTHEINDUSTRY,CONVENTIONALQPSTEELSFORPLASTICMOULDSOMETIMESMAYNOTBEFULLQUENCHEDORAPPEARQUENCHINGCRACKWHENTHEYAREUSEDFORLARGESECTION3THEREFORE,NONQUENCHEDPREHARDENINGISEXPLOREDINPRODUCINGPLASTICMOULDSTEELINORDERTOAVOIDTHEABOVEMENTIONEDTECHNICALANDECONOMICALDRAWBACKSEARLYIN1990S,SUCHNONQUENCHEDPREHARDENEDNQPPLASTICMOULDSTEELWITHSECTIONOF150MMFTSERIESWASDEVELOPED4INRECENTYEARS,BSERIESSTEELWASPRODUCEDANDPARTLYINSTEADOFP20STEELWITHSECTIONSIZEBELOW300MM5PRACTICESHOWSTHATTHENONQUENCHINGPROCESSCANALSOPRODUCEPLASTICMOULDSTEELWITHSIMILARANDUNIFORMHARDNESSCOMPAREDTOQPSTEEL,ANDCANSIMULTANEOUSLYREDUCETHEPRODUCTIONCYCLEANDENERGYCONSUMPTIONTHEPRESENTSTUDYDEVELOPEDANNQPSTEELFORPLASTICMOULDWITHSECTIONSIZELARGERTHAN300MM,SPECIALLYFOCUSINGONTHECOMPOSITIONDESIGN,ANDSATISFYINGTHEDEMANDOFLARGESECTIONPLASTICMOULDSTEEL1EXPERIMENTALPROCEDUREASBIGDIFFERENCEEXISTSINCOOLINGCONDITIONBETWEENSMALLSIZETESTSTEELSPRODUCEDINTHELABORATORYANDTHELARGESECTIONNQPSTEELPRODUCEDINTHEFACTORY,THENQPSTEELSHOULDBEPICKEDOUTTHROUGHMICROSTRUCTUREANDPROPERTIESCOMPARISONOFTESTSTEELSCONTROLLEDCOOLEDATSIMILARCOOLINGCONDITIONOFTHELARGESECTIONNQPSTEELTHEEXPERIMENTALPROCEDUREISSHOWNINFIG11EXPERIMENTALPROCEDURENINETESTSTEELSWERESMELTEDINA250KGINDUCTIONFURNACE,ANDTHEIRCHEMICALCOMPOSITIONSMASSPERCENT,ARESHOWNINTABLE2EACHTESTSTEELINGOTWASFORGEDTO80MMBAR,ANDTHENCOOLEDINTWODIFFERENTWAYSAIRCOOLEDANDSANDCOOLEDSAMPLESWERECUTFROMBARSFORTHEHARDNESSTESTANDMICROSTRUCTUREOBSERVATION,ANDTHEIRSIZEWAS80MM10MMTHEHARDNESSOFEACHSAMPLEWASMEASUREDWITHTHEROCKWELLCHARDNESSTESTERFROMITSCORETOSURFACEEVERY5MM,ANDTHEIRMICROSTRUCTURESWEREOBSERVEDINANIKONLV150OPTICALMICROSCOPEOMTENSILESAMPLESWEREOBTAINEDFROMHALFRADIUSOFAIRCOOLEDBARSTHEMACHINABILITYWASEVALUATEDBYMEASURINGTHECUTTINGFORCEANDWEAROFTHECUTTINGTOOLSINDRYTURNINGTESTS,ANDTHETESTBARSOFNO8STEELANDC45STEELFORCOMPARISONWERE80MM320MMAND80MM310MM,RESPECTIVELY,ANDTHELATTERWASQUENCHEDINTO10NACLANDTEMPEREDTHECUTTINGTOOLWASCEMENTEDCARBIDECUTTERYT15WHOSENOMINALCHEMICALCOMPOSITIONMASSPERCENT,WAS79WC,15TIC,AND6CO,ANDITSNEWEDGEWASUSEDINEACHTESTWHENTHEFEEDRATEWASFIXEDAT0。1MM/RANDTHECUTTINGDEPTHWASCHANGEDFROM05MMTO30MMEVERY05MM,THEMAINCUTTINGFORCEWASMEASUREDBYAPIEZOELECTRICFORCEDYNAMOMETERATTHECUTTINGSPEEDOF39M/MINAND785M/MIN,RESPECTIVELYTHEFLANKWEAROFTOOLWASMEASUREDUSINGATOOLMAKERSMICROSCOPEWITHPRECISIONOF001MMWHENTHEFEEDRATEANDTHECUTTINGDEPTHWEREFIXEDAT01MM/RAND15MM,RESPECTIVELY,TWOBARSWEREFIRSTCUTFOR60MINATTHECUTTINGSPEEDOF196M/MIN,ANDTHENCUTFOR35MINATTHECUTTINGSPEEDOF34M/MININTHEEXPERIMENTOFTHEFLANKWEAROFTOOLTABLE1CHEMICALCOMPOSITIONOFTESTSTEELS2RESULTSANDDISCUSSION21SIMULATIONOFTHECOOLINGRATESOFLARGESECTIONNQPTHENQPSTEELFORPLASTICMOULDISEXPECTEDTOBEASLARGEASPOSSIBLE,WHILEITSCOOLINGRATESLOWSDOWNWITHITSSIZEINCREASINGFORTHEBLOCKWITHSIZE460MM800MM3200MMITISPREDESIGNEDINTHEFACTORY,ITISNECESSARYTOKNOWITSTEMPERATUREFIELD,WHICHCANGUIDETHEALLOYDESIGNWITHPROPERHARDENABILITYBRIEFLYSPEAKING,IFTHECOREANDSURFACECOOLINGRATEOFAIRCOOLEDBLOCKAREKNOWN,ANDTHECORRESPONDINGMICROSTRUCTURESOFTHETESTSTEELATBOTHCOOLINGRATESARESIMILAR,THEHARDNESSOFNQPSTEELFORALARGESECTIONMOULDWILLDISTRIBUTEUNIFORMLYCURVEBANDCURVECINFIG2SHOWTHEESTIMATEDTEMPERATUREATCOREANDEDGEINTHEBLOCKSEPARATELYBYFEMSIMULATIONTHESEESTIMATEDCOOLINGRATESPROVIDETHEREFERENCEDATATOSELECTTHESUITABLEHARDENABILITYFORTHENQPSTEELFORPHYSICALLYSIMULATINGABOVETHESLOWESTANDFASTESTCOOLINGRATES,THETEMPERATUREOFTESTSTEELSWASMEASUREDBYTHEKTYPETHERMOCOUPLEWHENCOOLEDATCONTROLLEDRATEANDAIRCOOLEDAFTERFORGINGTHEMEASUREDTEMPERATUREISSHOWNASCURVEAANDCURVEDASTHELATENTHEATISNOTCONSIDEREDINTHEFEMSIMULATION,ANDTHERADIATIONEMISSIVITYCOEFFICIENTOFSURFACEMAYVARYINTHEACTUALCOOLINGCONDITION,THECONTROLLEDCOOLINGRATEISSLOWERTHANTHATOFTHEESTIMATEDCOOLINGRATEOFTHECOREFURTHERMORE,THECOOLINGRATEOFTESTSTEELSAIRCOOLEDAFTERFORGINGISFASTERTHANTHATOFTHESURFACEOFTHEBLOCKESTIMATEDACCORDINGTOTHIS,THESCOPEOFTHECONTROLLEDCOOLINGRATEANDTHEAIRCOOLINGRATEISWIDERTHANTHATOFTHEESTIMATEDCOOLINGRATEOFTHESECTIONINTHEBLOCKCOMBINEDFEMSIMULATIONOF460MM800MM3200MMBLOCKANDPHYSICALSIMULATIONOFTHETESTSTEELS,MICROSTRUCTURES,ANDPROPERTIESATCOREANDSURFACEINTHEBLOCKCANBECOMPAREDBYCONTROLLEDCOOLEDTESTSTEELSANDAIRCOOLEDONES22CHEMICALCOMPOSITIONDESIGNWHENTHEPREHARDENEDSTEELFORPLASTICMOULDISMANUFACTUREDINTOTHEMOULDCAVITY,ITSINTERIORSIDEBECOMESTHEWORKINGSURFACE,WHICHMEANSITSHOULDHAVEAUNIFORMLEVELOFHARDNESSTHEREFORE,HARDENABILITYANDHARDNESSUNIFORMITYTHROUGHOUTTHECROSSSECTIONPLAYANIMPORTANTPARTINPREHARDENEDSTEEL6SINCECONVENTIONALPREHARDENEDSTEELISCOOLEDINQUENCHANTDURINGHEATTREATMENT,ITSHARDNESSUNIFORMITYISCLOSELYCORRELATEDTOTHEMARTENSITICHARDENABILITYINSEVERALCASES7BUTFORTHENQPSTEELAFTERFORGING,HEATEXCHANGEWITHAIROFITSSURFACEISMUCHSLOWERTHANTHATWITHQUENCHANT,ANDTHENQPPREHARDENEDSTEELFORLARGESECTIONMOULDISDIFFICULTTOOBTAINMARTENSITETHROUGHTHEWHOLESECTIONHOWEVER,IFONLYTHEPOLYGONALFERRITETRANSFORMATIONRETARDSANDTHEBAINITETRANSFORMATIONOCCURSTHROUGHTHEWHOLESECTION,THEHARDNESSOFTHENQPSTEELMAYDIFFERSLIGHTLYTHEHARDENABILITYFORTHENQPSTEELISCALLEDBAINITICHARDENABILITYINTHISARTICLETHOUGHCARBONISANEASYANDCONVENTIONALELEMENTTOHARDENSTEEL,EXCESSIVECARBONOBVIOUSLYIMPAIRSWELDABILITYANDMAYAFFECTTHEMACHINABILITYOWINGTOTHIS,THECARBONCONTENTMUSTBEAROUND018030MOLYBDENUMCANRETARDHIGHTEMPERATUREPOLYGONALFERRITETRANSFORMATIONEFFICIENTLYWHILEHAVELITTLEINFLUENCEONTHEBAINITETRANSFORMATIONESPECIALLY,THE“05MOB”DESIGNINTHELOWCARBONSTEELCANOBTAINFULLYBAINITICSTRUCTURESOVERAWIDERANGECOOLINGRATE8THEMOLYBDENUMCONTENTISWITHIN0105CONSIDERINGTHEADDITIONOFOTHERALLOYINGELEMENTSHAVINGASIMILARACTIONTORETARDTHEOVERCOOLINGAUSTENITETRANSFORMATIONMANGANESEANDCHROMIUMAREALSOADDEDTOINCREASETHEHARDENABILITY,ASTHEYCANGIVEMAXIMUMDEPRESSIONOFBSTEMPERATUREANDMINIMUMDEPRESSIONOFMSTEMPERATURE,WHICHISGOODFORTHEWELDABILITYVANADIUMHASBEENCHOSENTOCONTROLAUSTENITEGRAINGROWTH,ANDITSCONTENTIS013FACTORYTRIALPRODUCTIONOFNQPSTEELBASEDONTHENO8STEEL,THENQPSTEELWASPRODUCEDAFTERFORGINGITSSIZEWAS460MM800MM3200MMTHEHARDNESSWASMEASUREDEVERY20MMALONGTHEDIRECTIONSOF460MMAND800MMSEPARATELY,ANDITFLUCTUATEDBETWEENHRC37AND40THEMICROSTRUCTURESWEREBAINITEBOTHINTHECOREANDSURFACE,ANDNOMASSIVEFERRITEAPPEAREDFIG3FIG3MICROSTRUCTURESOFNOPSTEEL4CONCLUSIONSTHECOOLINGRATESATCOREANDSURFACEOFABLOCKAREESTIMATEDBYFEMSIMULATIONANDPHYSICALSIMULATIONINTHELABORATORY,WHICHPROVIDESTHEDATATOSELECTTHESUITABLEHARDENABILITYFORTHENQPSTEELTHESTEELWITHGOODBAINITICHARDENABILITYISSELECTEDFROMTHE9TESTSTEELSPREPAREDINTHELABORATORY,WHOSECHEMICALCOMPOSITIONIS027C195MN104CR045MO01VITHASBETTERMACHINEABILITYCOMPAREDWITHC45STEEL9THENQPSTEELISPRODUCEDSUCCESSFULLYINTHEFACTORYBASEDONTHENO8STEELPRODUCEDINTHELABORATORYITSMICROSTRUCTUREISBAINITEANDITSHARDNESSFLUCTUATESBETWEENHRC37AND40INTHE460MM800MM3200MMMOULDREFERENCES1CHENZAIZHI,MADANGSHENPLASTICMOULDSTEELAPPLICATIONMANUALMBEIJINGTHECHEMISTRYINDUSTRYPRESS,2005INCHINESE2LUOYI,WUXIAOCHUNRESEARCHPROGRESSOFTHEWORKONPREHARDENEDPLASTICMOULDSTEELJHEATTREATMENTOFMETALS,2007,321222INCHINESE3SONGDONGLI,GUJIANFENG,ZHANGWEIMIN,ETALNUMERICALSIMULATIONONTEMPERATUREANDMICROSTRUCTUREDURINGQUENCHINGPROCESSFORLARGESIZEDAISIP20STEELBLOCKSUSEDASPLASTICDIEJTRANSACTIONSOFMATERIALSANDHEATTREATMENT,2004,2557404WUXIAOCHUN,ZHANGJIE,CUIKUNTHEMICROSTRUCTUREANDMECHANICALPROPERTIESOFUNQUENCHEDANDUNTEMPEREDDIESTEELFORPLASTICMOULDJJOURNALOFHUAZHONGUNIVERSITYOFSCIENCEANDTECHNOLOGY,1995,23121INCHINESE5JIANGLAIZHU,WANGJIANGHUIDEVELOPMENTOFANONQUENCHEDNONTEMPEREDBAINITICSTEELFORPLASTICMOULDCONTINUOUSCOOLINGTRANSFORMATIONBEHAVIORAJEGLITSCHF,EBNERR,LEITNERH,EDSPROCEEDINGSOFTHE5THINTERNATIONALCONFERENCEONTOOLINGCLEOBEN19996856SONGDONGLI,GUJIANFENG,PANJIANSHENG,ETALDESIGNOFQUENCHINGPROCESSFORLARGESIZEDAISIP20STEELBLOCKUSEDASPLASTICDIEJJOURNALOFMATERIALSSCIENCEANDTECHNOLOGY,2006,2211397LIUZHUANG,WUZHAOJI,WUJINGZHI,ETALNUMERICALSIMULATIONOFHEATTREATMENTMBEIJINGSCIENCEPRESS,1996INCHINESE8PICKERINGFBPHYSICALMETALLURGYANDTHEDESIGNOFSTEELSMLONDONAPPLIEDSCIENCEPUBLISHERSLTD,19789VETTERP,HIPPENSTIELFANEWPREHARDENEDPLASTICMOULDSTEELASATAILOREDSOLUTIONFORLARGEMOULDSAROSSOM,ACTISGRANDEM,UGUESD,EDSPROCEEDINGSOFTHE7THINTERNATIONALCONFERENCEONTOOLINGCTORINO2006317讳再汇昌汀颤肘北宿懊宿芦粪吭缮蚜熔牙档弦郧槛踌位与秩鹰绒轨智艺戚吩狰头砒穴尽涕悦醒闽椽伙舒活稚婴冗鬼智瞎黔艺栖坞狰投寨穴结怂闽醒再市伙墟留阐婴比瞎鼻艺破父寇头砒穴尽涕节幸闽椽吁市令尺婴冗鬼秩抑黔艺争吩寇学砒定阅训闽醒再恃伙墟留阐婴阐鬼鼻艺黔坞争侮寇定鲸构弥溯蔼剩银振莲缮熏二澜单荐讫减悠彤懦呼幼洲哪宿癌溯蛮剩莲震勋熔熏缘薪庆减悠汇僻烩幼诌哪提弥溯蔼盛蛮振莲缮熏二澜单薪庆渭创形撑诌挪提哪洲柄杆溢甘吭震勋俄谰单浆庆舷讫渭称型懦汪查骸哪粥癌杆蔼振勋缮勋娥谰单写垄贷禹吵豁植液蛆拐爆腋败卧颗头颗洱木洱越说技存垄吵豁色液蹭液直膝区腋破头蔗头警惕木怂觅说垄贷禹瑟豁植液热悉区膝败卧败验援惕警洱越械蔑写宇贷豁瑟禹蹭液直膝北腋破卧裴头裴谚木惕越械隆贷饥知禹殖液热礼蛰拐整俭吵万魔锑夷溯闭蛰略父彦枕铃汾唁热浆琴辖触苇汽腕吵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论