会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文翻译--磨削过程中应力残留 英文版.pdf外文翻译--磨削过程中应力残留 英文版.pdf -- 5 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

ResidualstressingrindingBogdanW.Kruszyn´ski,RyszardWo´jcikTechnicalUniversityofŁo´dz´,Skorupki6/8,90924Ło´dz´,PolandAbstractResultsofinvestigationsonresidualstressinsurfacegrindingarepresentedinthepaper.AcoefficientBcombiningpowerdensityandwheel/workpiececontacttimewasdeveloped.Experimentalsetupandsoftwaretoestimatethecoefficientduringgrindingaredescribedinthepaper.Experimentswerecarriedoutforsurfaceplungegrindingforseveralworkmaterialsinawiderangeofgrindingconditions.TheinfluenceofprocessparametersonthecoefficientBaswellastherelationbetweenBandmaximumresidualstresswereexperimentallyevaluated.Theusefulnessofthecoefficienttopredictresidualstressinsurfacegrindingwasproved.2001ElsevierScienceB.V.Allrightsreserved.KeywordsResidualstressGrindingWheel/workpiece1.IntroductionGrindingisoneofthemostpopularmethodsofmachininghardmaterials.Becauseitisusuallyoneofthefinaloperationsofthetechnologicalprocess,propertiesofsurfacelayercreatedingrindinginfluencedirectlythefunctionalpropertiesoftheworkpiecesuchasfatiguestrength,abrasiveandcorrosionresistance,etc.Creatingfavourablesurfaceintegrity,especiallyingrindingwithaluminiumoxidegrindingwheelsisdifficultduetotwooppositetendencies.Ononehand,highprocessparametersarepreferredinordertoincreaseproductivity.Unfortunately,suchparametersusuallyleadtotheincreaseofgrindingpowerengagedincreationofthenewsurfaceoftheworkpiece.Ontheotherhand,theincreaseofgrindingpowermakesgrindingtemperaturesgrow,whichmaycauseaseriousdamagetothesurfacelayercreatedingrinding.Findingacompromisebetweenhighproductivityandadvantageoussurfacelayerpropertiesisextremelydifficultduetothelackofrelativelysimpleanduniversalroutines,amongothers.Becauseoftheimportanceofgrindingoperationtheinvestigationsofthisprocessareperformedinmanyresearchcentres.Somegeneralapproachesareobservedintheseinvestigations.Thefirstone,strictlyanalytical4,5,isbasedonthemathematicaldescriptionofphysicalprocessesinvolvedinsurfacelayercreation.Ingrindingthermaleffectsareusuallydescribed.Onthebasisofthecalculationsoftemperaturedistributionintheworkpiece,suchchangesinsurfacelayerlikemicrohardness,residualstresses,microstructure,etc.areestimated5.Suchanapproachisverypromisingbutatthepresentstageitislimitedtotheoreticalinvestigationsbecauseofcomplexcalculationsandstilllimitedknowledgeaboutmaterialbehaviourinextremegrindingconditions.Theexperimentalapproach1,7aimsatfindingacorrelationbetweengrindingconditionsandsurfacelayerparameters.Thisisarelativelysimplemethodwithsomedisadvantages.Experimentalworksareusuallytimeandcapitalconsumingwhichlimitstheirapplication.Moreover,thereisalimitedpossibilitytoextrapolatetheexperimentalresultsondifferentgrindingmethodsandgrindingconditions.Thereisalsoathirdapproachtotheproblemofcontrolofsurfacelayercreation,whichinvolvesasearchforsuchgrindingcoefficients,whicharestronglycorrelatedwithsurfacelayerproperties2,4.Therearemanysuchcoefficientsexisting.ThemostpopularareequivalentchipthicknessheqandpowerdensityP0.Theformerisprovedtobeusefulingrindingceramics,thelatterisoftenappliedwhengrindingwithaluminiumoxidegrindingwheelsisinvestigated2.Themaindisadvantageofbothcoefficientsisthattocalculatethemitisnecessarytoestimatetheeffectivegrindingdepthoreffectivewheel/workpiececontactlength.Bothvaluesareverydifficulttoestimateonlinegrindingaccurately.Thus,aneasytoestimategrindingcoefficient,whichwouldbestronglycorrelatedwithsurfaceintegrityparameters,isstilllacking.TheinvestigationonthecorrelationbetweenthecoefficientcombiningpowerdensityandtheJournalofMaterialsProcessingTechnology1092001254–257Correspondingauthor.09240136/01/–seefrontmatter2001ElsevierScienceB.V.Allrightsreserved.PIIS0924013600008074wheel/workpiececontacttimeandresidualstressinsurfacegrindingisdescribedbelow.2.GrindingcoefficientcombiningpowerdensityandcontacttimeItwasproved3thatresidualstressesinsurfacelayeraftergrindingarecloselycorrelatedwithmaximumgrindingtemperature.Theanalysisofequationsusedfortemperaturecalculationingrinding6indicatesthatitisnotonlythepowerdensitythatinfluencesthegrindingtemperaturebutthereisalsoasecondimportantfactorwheel/workmaterialcontacttime.Insurfacegrindingthecontacttimeoftheparticularworkpiecepointwithheatsourcegrindingwheelcanbeeasilycalculatedastclevw1whereleisaneffectivewheel/workpiececontactlengthandvwistheworkspeed.TheproposedgrindingcoefficientBisaproductofpowerdensityP0andcontacttimetcBP0tcPbdlelevwPbdvw2wherePisthetotalgrindingpowerandbdthegrindingwidth.Thefirstadvantageofthiscoefficientisthatallquantitiesinthisequationgrindingpower,grindingwidthandworkspeedareeasytomeasureonlineinagrindingprocess.3.ExperimentalsetupExperimentswerecarriedoutforthefollowinggrindingconditions.workmaterialscarbonsteel0.45C,28HRCmarkedS,alloysteel40H0.38C,0.9Cr,0.28Ni48HRCH,bearingsteelŁH15equivalentto100Cr662HRCLgrindingwheels38A60J8VJ,99A80M7VMwheelspeed26m/sconstantgrindingdepthfrom0.005to0.06mmworkspeedfrom0.08to0.5m/sgrindingfluidemulsionornone.Grindingparametersintheseinvestigationswerelimitedbythepowerofthemainwheeldrive,tablespeedregulationrangeandbytheappearanceofunacceptablechangesinthesurfacelayer,microcracksandburns.ToestimatecoefficientBitwasnecessarytomeasuregrindingpower,workspeedandgrindingwidth.GrindingpowerwasmeasuredintwodifferentwaysbythemeasurementofpowerconsumedbywheelmaindrivePmandsimultaneousmeasurementoftangentialgrindingforceFtandwheelspeedvs.ThegrindingpowercanthenbecalculatedasPcFtvs.ThecomparisonoftheresultsobtainedfrombothmethodsisshowninFig.1.Averygoodcorrelationcanbeseenfromthisfigure,whichprovesthatmeasurementofpowerconsumptionofwheelmaindriveisaccurateenoughtoestimatecoefficientBinthecasewhenonlygrindingwheelisdrivenbythisdrive.Thewheelspeedwasmeasuredbymeansofdisplacementtransducerandgrindingwidthwastakenasawidthofthesamplebeingground.4.ExperimentalresultsOnthebasisofmeasuredvaluesofP,vwandbdinsurfacegrinding,thecoefficientBwascalculatedineachgrindingtest.Measurementscarriedoutduringgrindingallowed,firstofall,toevaluatetheinfluenceofgrindingconditionsonthecoefficientB,cf.Figs.2–7.ThelineardependencebetweeneffectivegrindingdepthandBcanbeseenfromFigs.2,4and6.Slopesoftheselinesdependmainlyongrindingwheel,workspeedFigs.2and6andongrindingfluidFig.4.ThecorrectnessoflinearapproximationwasprovedinastatisticalwayvaluesofR2werehigherthan0.9inallcases.Fig.1.Comparisonofmeasuredandcalculatedgrindingpower.Fig.2.TheinfluenceofgrindingdepthandgrindingwheelgradeoncoefficientBforcarbonsteelS.B.W.Kruszyn´ski,R.Wo´jcik/JournalofMaterialsProcessingTechnology1092001254–257255TheinfluenceofworkspeedoncoefficientB,Figs.3,5and7,isnotasuniformasthoseobtainedforgrindingdepth.MuchhigherinfluenceofvwonBisobservedforalowerrangeofworkspeeds.ItindicatesthatthereisalimitedpossibilitytoinfluencecoefficientBbychangesoftheworkspeed.VerysimilardependencieswereobtainedforthethirdworkmaterialinvestigatedalloysteelH.Forallexperiments,inwhichmicrocracksand/orburnswerenotpresent,residualstressdistributionwasmeasuredbymeansofthewellknownmaterialremovalmethod.Fromresidualstressvs.depthbelowsurfacediagramsobtainedforeachgrindingtest,maximalresidualstressesinthesurfacelayerweredetermined.Usually,residualstressesreachtheirmaximumtensilevaluesclosetothesurfaceondepthsof10–20mm.RelationsbetweencoefficientBandmaximumresidualstressforinvestigatedworkmaterialsareshowninFigs.8–10.Inthesediagramstheresultsaresummarisedforeachworkmaterialregardlessofothergrindingconditionsgrindingwheelproperties,grindingfluid,grindingparameters.IneachcasethelineardependencewasassumedwhichwasprovedinastatisticalwayR2from0.8529to0.9074.ItresultsfromthesefiguresthattheslopesofresidualstresscoefficientBlinesarecharacteristicforthegivenworkmaterialandseemtobeindependentofothergrindingconditions.ThehighestslopewasobtainedforbearingsteelL,Fig.10,andthelowestoneforalloysteelH,Fig.9.Fig.3.TheinfluenceofworkspeedandgrindingwheelgradeoncoefficientBforcarbonsteelS.Fig.4.TheinfluenceofgrindingdepthandgrindingfluidoncoefficientBforcarbonsteelS.Fig.5.TheinfluenceofworkspeedandgrindingfluidoncoefficientBforcarbonsteelS.Fig.6.TheinfluenceofgrindingdepthandgrindingwheelgradeoncoefficientBforbearingsteelL.Fig.7.TheinfluenceofworkspeedandgrindingwheelgradeoncoefficientBforbearingsteelL.256B.W.Kruszyn´ski,R.Wo´jcik/JournalofMaterialsProcessingTechnology1092001254–257SomeadditionalobservationsrecordedduringinvestigationsindicatethatthereisapossibilitytousethecoefficientBtopredictand/orcontrolsuchchangesinsurfacelayerlikemicrocracks,burnsormicrostructurechanges.Additionalinvestigationsarenecessarytoconfirmtheusefulnessofthiscoefficientinothergrindingmethods.5.Conclusions1.ThegrindingcoefficientBcombiningpowerdensityandwheel/workpiececontacttimewasdevelopedtopredictresidualstressinsurfacegrinding.2.AlinearcorrelationbetweencoefficientBandmaximumresidualstresswasfoundexperimentally.Itwasconfirmedforseveralworkmaterials.3.TherelationbetweencoefficientBandmaximumresidualstressseemstobeindependentofgrindingconditions.4.CoefficientBincreaseslinearlywiththeincreaseofgrindingdepthanddecreaseswiththeincreaseofworkspeed.Thisdecreaseshowslessintensityintherangeofhigherworkspeeds.5.ThecoefficientBiseasytoestimate,evenonline,inindustrialpractice.6.ThecoefficientBmaybeusefulinpredictingsuchsurfacelayerpropertiesingrindinglikemicrocracks,burnsormicrostructurechanges.References1P.G.Althaus,Residualstressininternalgrinding,Ind.DiamondRev.31985124–127.2E.Brinksmeier,H.K.To¨nshoff,Basicparametersingrinding,Ann.CIRP4211993795–799.3E.Brinksmeier,S.T.Comet,W.Ko¨nig,P.Leskovar,J.Peters,H.K.To¨nshoff,Residualstressmeasurementandcauses,Ann.CIRP3121982491–510.4B.W.Kruszyn´ski,C.A.Luttervelt,Anattempttopredictresidualstressesingrindingofmetalswiththeaidofthenewgrindingparameter,Ann.CIRP4011991335–337.5H.K.To¨nshoff,J.Peters,I.Inasaki,T.Paul,Modellingandsimulationofgrindingprocess,Ann.CIRP4121992677–688.6E.Vansevenant,Asubsurfaceintegritymodelingrinding,Ph.D.Thesis,KULueven,1987.7Y.Zheyun,H.Zhonghui,SurfaceintegrityofgrindingofbearingsteelGCr15withCBNwheels,Ann.CIRP3811989677–688.Fig.8.Maximumresidualstressvs.coefficientBforcarbonsteelS.Fig.9.Maximumresidualstressvs.coefficientBforalloysteelH.Fig.10.Maximumresidualstressvs.coefficientBforbearingsteelL.B.W.Kruszyn´ski,R.Wo´jcik/JournalofMaterialsProcessingTechnology1092001254–257257
编号:201311171656407540    大小:206.70KB    格式:PDF    上传时间:2013-11-17
  【编辑】
5
关 键 词:
教育专区 外文翻译 精品文档 外文翻译
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:17次
英文资料库上传于2013-11-17

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

教育专区   外文翻译   精品文档   外文翻译  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5