外文翻译--磨削过程中应力残留  英文版.pdf_第1页
外文翻译--磨削过程中应力残留  英文版.pdf_第2页
外文翻译--磨削过程中应力残留  英文版.pdf_第3页
外文翻译--磨削过程中应力残留  英文版.pdf_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ResidualstressingrindingBogdanW.Kruszynski*,RyszardWojcikTechnicalUniversityofodz,Skorupki6/8,90-924odz,PolandAbstractResultsofinvestigationsonresidualstressinsurfacegrindingarepresentedinthepaper.AcoefficientBcombiningpowerdensityandwheel/workpiececontacttimewasdeveloped.Experimentalset-upandsoftwaretoestimatethecoefficientduringgrindingaredescribedinthepaper.Experimentswerecarriedoutforsurfaceplungegrindingforseveralworkmaterialsinawiderangeofgrindingconditions.TheinfluenceofprocessparametersonthecoefficientBaswellastherelationbetweenBandmaximumresidualstresswereexperimentallyevaluated.Theusefulnessofthecoefficienttopredictresidualstressinsurfacegrindingwasproved.#2001ElsevierScienceB.V.Allrightsreserved.Keywords:Residualstress;Grinding;Wheel/workpiece1.IntroductionGrindingisoneofthemostpopularmethodsofmachininghardmaterials.Becauseitisusuallyoneofthefinalopera-tionsofthetechnologicalprocess,propertiesofsurfacelayercreatedingrindinginfluencedirectlythefunctionalproper-tiesoftheworkpiecesuchasfatiguestrength,abrasiveandcorrosionresistance,etc.Creatingfavourablesurfaceintegrity,especiallyingrind-ingwithaluminiumoxidegrindingwheelsisdifficultduetotwooppositetendencies.Ononehand,highprocesspara-metersarepreferredinordertoincreaseproductivity.Unfortunately,suchparametersusuallyleadtotheincreaseofgrindingpowerengagedincreationofthenewsurfaceoftheworkpiece.Ontheotherhand,theincreaseofgrindingpowermakesgrindingtemperaturesgrow,whichmaycauseaseriousdamagetothesurfacelayercreatedingrinding.Findingacompromisebetweenhighproductivityandadvantageoussurfacelayerpropertiesisextremelydifficultduetothelackofrelativelysimpleanduniversalroutines,amongothers.Becauseoftheimportanceofgrindingopera-tiontheinvestigationsofthisprocessareperformedinmanyresearchcentres.Somegeneralapproachesareobservedintheseinvestigations.Thefirstone,strictlyanalytical4,5,isbasedonthemathematicaldescriptionofphysicalprocessesinvolvedinsurfacelayercreation.Ingrindingthermaleffectsareusuallydescribed.Onthebasisofthecalculationsoftemperaturedistributionintheworkpiece,suchchangesinsurfacelayerlikemicrohardness,residualstresses,microstructure,etc.areestimated5.Suchanapproachisverypromisingbutatthepresentstageitislimitedtotheoreticalinvestigationsbecauseofcomplexcalculationsandstilllimitedknowledgeaboutmaterialbehaviourinextremegrindingconditions.Theexperimentalapproach1,7aimsatfindingacorre-lationbetweengrindingconditionsandsurfacelayerpara-meters.Thisisarelativelysimplemethodwithsomedisadvantages.Experimentalworksareusuallytime-andcapital-consumingwhichlimitstheirapplication.Moreover,thereisalimitedpossibilitytoextrapolatetheexperimentalresultsondifferentgrindingmethodsandgrindingconditions.Thereisalsoathirdapproachtotheproblemofcontrolofsurfacelayercreation,whichinvolvesasearchforsuchgrindingcoefficients,whicharestronglycorrelatedwithsurfacelayerproperties2,4.Therearemanysuchcoeffi-cientsexisting.Themostpopularare:equivalentchipthickness(heq)andpowerdensity(P0).Theformerisprovedtobeusefulingrindingceramics,thelatterisoftenappliedwhengrindingwithaluminiumoxidegrindingwheelsisinvestigated2.Themaindisadvantageofbothcoefficientsisthattocalculatethemitisnecessarytoestimatetheeffectivegrindingdepthoreffectivewheel/workpiececontactlength.Bothvaluesareverydifficulttoestimateon-linegrindingaccurately.Thus,aneasy-to-estimategrindingcoefficient,whichwouldbestronglycorrelatedwithsurfaceintegritypara-meters,isstilllacking.TheinvestigationonthecorrelationbetweenthecoefficientcombiningpowerdensityandtheJournalofMaterialsProcessingTechnology109(2001)254257*Correspondingauthor.0924-0136/01/$seefrontmatter#2001ElsevierScienceB.V.Allrightsreserved.PII:S0924-0136(00)00807-4wheel/workpiececontacttimeandresidualstressinsurfacegrindingisdescribedbelow.2.GrindingcoefficientcombiningpowerdensityandcontacttimeItwasproved3thatresidualstressesinsurfacelayeraftergrindingarecloselycorrelatedwithmaximumgrindingtemperature.Theanalysisofequationsusedfortemperaturecalculationingrinding6indicatesthatitisnotonlythepowerdensitythatinfluencesthegrindingtemperaturebutthereisalsoasecondimportantfactorwheel/workma-terialcontacttime.Insurfacegrindingthecontacttimeoftheparticularworkpiecepointwithheatsource(grindingwheel)canbeeasilycalculatedastclevw(1)whereleisaneffectivewheel/workpiececontactlengthandvwistheworkspeed.TheproposedgrindingcoefficientBisaproductofpowerdensityP0andcontacttimetc:BP0tcPbdlelevwPbdvw(2)wherePisthetotalgrindingpowerandbdthegrindingwidth.Thefirstadvantageofthiscoefficientisthatallquantitiesinthisequation(grindingpower,grindingwidthandwork-speed)areeasytomeasureon-lineinagrindingprocess.3.Experimentalset-upExperimentswerecarriedoutforthefollowinggrindingconditions.workmaterials:carbonsteel0.45%C,28HRC(markedS),alloysteel40H(0.38%C,0.9%Cr,0.28%Ni)48HRC(H),bearingsteelH15(equivalentto100Cr6)62HRC(L);grindingwheels:38A60J8V(J),99A80M7V(M);wheelspeed:26m/s(constant);grindingdepth:from0.005to0.06mm;workspeed:from0.08to0.5m/s;grindingfluid:emulsionornone.Grindingparametersintheseinvestigationswerelimitedbythepowerofthemainwheeldrive,tablespeedregulationrangeandbytheappearanceofunacceptablechangesinthesurfacelayer,microcracksandburns.ToestimatecoefficientBitwasnecessarytomeasuregrindingpower,workspeedandgrindingwidth.Grindingpowerwasmeasuredintwodifferentways:bythemeasure-mentofpowerconsumedbywheelmaindrive(Pm)andsimultaneousmeasurementoftangentialgrindingforceFtandwheelspeedvs.Thegrindingpowercanthenbecalcu-latedasPcFtvs.ThecomparisonoftheresultsobtainedfrombothmethodsisshowninFig.1.Averygoodcorrela-tioncanbeseenfromthisfigure,whichprovesthatmea-surementofpowerconsumptionofwheelmaindriveisaccurateenoughtoestimatecoefficientBinthecasewhenonlygrindingwheelisdrivenbythisdrive.Thewheelspeedwasmeasuredbymeansofdisplacementtransducerandgrindingwidthwastakenasawidthofthesamplebeingground.4.ExperimentalresultsOnthebasisofmeasuredvaluesofP,vwandbdinsurfacegrinding,thecoefficientBwascalculatedineachgrindingtest.Measurementscarriedoutduringgrindingallowed,firstofall,toevaluatetheinfluenceofgrindingconditionsonthecoefficientB,cf.Figs.27.ThelineardependencebetweeneffectivegrindingdepthandBcanbeseenfromFigs.2,4and6.Slopesoftheselinesdependmainlyongrindingwheel,workspeed(Figs.2and6)andongrindingfluid(Fig.4).ThecorrectnessoflinearapproximationwasprovedinastatisticalwayvaluesofR2werehigherthan0.9inallcases.Fig.1.Comparisonofmeasuredandcalculatedgrindingpower.Fig.2.TheinfluenceofgrindingdepthandgrindingwheelgradeoncoefficientBforcarbonsteel(S).B.W.Kruszynski,R.Wojcik/JournalofMaterialsProcessingTechnology109(2001)254257255TheinfluenceofworkspeedoncoefficientB,Figs.3,5and7,isnotasuniformasthoseobtainedforgrindingdepth.MuchhigherinfluenceofvwonBisobservedforalowerrangeofworkspeeds.ItindicatesthatthereisalimitedpossibilitytoinfluencecoefficientBbychangesoftheworkspeed.Verysimilardependencieswereobtainedforthethirdworkmaterialinvestigatedalloysteel(H).Forallexperiments,inwhichmicrocracksand/orburnswerenotpresent,residualstressdistributionwasmeasuredbymeansofthewell-knownmaterialremovalmethod.Fromresidualstressvs.depthbelowsurfacediagramsobtainedforeachgrindingtest,maximalresidualstressesinthesurfacelayerweredetermined.Usually,residualstressesreachtheirmaximum(tensilevalues)closetothesurfaceondepthsof1020mm.RelationsbetweencoefficientBandmaximumresidualstressforinvestigatedworkmaterialsareshowninFigs.810.Inthesediagramstheresultsaresummarisedforeachworkmaterialregardlessofothergrindingconditions(grind-ingwheelproperties,grindingfluid,grindingparameters).Ineachcasethelineardependencewasassumedwhichwasprovedinastatisticalway(R2from0.8529to0.9074).Itresultsfromthesefiguresthattheslopesofresidualstress-coefficientBlinesarecharacteristicforthegivenworkmaterialandseemtobeindependentofothergrindingconditions.Thehighestslopewasobtainedforbearingsteel(L),Fig.10,andthelowestoneforalloysteel(H),Fig.9.Fig.3.Theinfluenceofworkspeedandgrindingwheelgradeoncoef-ficientBforcarbonsteel(S).Fig.4.TheinfluenceofgrindingdepthandgrindingfluidoncoefficientBforcarbonsteel(S).Fig.5.TheinfluenceofworkspeedandgrindingfluidoncoefficientBforcarbonsteel(S).Fig.6.TheinfluenceofgrindingdepthandgrindingwheelgradeoncoefficientBforbearingsteel(L).Fig.7.TheinfluenceofworkspeedandgrindingwheelgradeoncoefficientBforbearingsteel(L).256B.W.Kruszynski,R.Wojcik/JournalofMaterialsProcessingTechnology109(2001)254257Someadditionalobservationsrecordedduringinvestiga-tionsindicatethatthereisapossibilitytousethecoefficientBtopredictand/orcontrolsuchchangesinsurfacelayerlikemicrocracks,burnsormicrostructurechanges.Additionalinvestigationsarenecessarytoconfirmtheusefulnessofthiscoefficientinothergrindingmethods.5.Conclusions1.ThegrindingcoefficientBcombiningpowerdensityandwheel/workpiececontacttimewasdevelopedtopredictresidualstressinsurfacegrinding.2.AlinearcorrelationbetweencoefficientBandmaxi-mumresidualstresswasfoundexperimentally.Itwasconfirmedforseveralworkmaterials.3.TherelationbetweencoefficientBandmaximumresidualstressseemstobeindependentofgrindingconditions.4.CoefficientBincreaseslinearlywiththeincreaseofgrindingdepthanddecreaseswiththeincreaseofworkspeed.Thisdecreaseshowslessintensityintherangeofhigherworkspeeds.5.ThecoefficientBiseasy-to-estimate,evenon-line,inindustrialpractice.6.ThecoefficientBmaybeusefulinpredictingsuchsurfacelayerpropertiesingrinding

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论