电力系统外文翻译外文翻译英文_第1页
电力系统外文翻译外文翻译英文_第2页
电力系统外文翻译外文翻译英文_第3页
电力系统外文翻译外文翻译英文_第4页
电力系统外文翻译外文翻译英文_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MODELLINGANDTRANSIENTSTABILITYOFLARGEWINDFARMS1INTRODUCTIONDENMARKHASCURRENTLYABOUT2300MWWINDPOWERCAPACITYINONLANDANDFEWOFFSHORESETTINGS,WHICHCORRESPONDSTOMORETHAN20OFPOWERCONSUMPTIONINAVERAGEFURTHER,CONSTRUCTIONOFTWOLARGESCALEOFFSHOREWINDFARMSOF150MWPOWERCAPACITYEACHHASBEENANNOUNCEDTHEFIRSTLARGEOFFSHOREWINDFARMINDENMARKWILLBECONSTRUCTEDATHOMSREVBYTHEYEAR2002INTHEAREAOFTHESYSTEMOPERATORELTRATHISWILLBEFOLLOWEDBYTHEFIRSTINTHEAREAOFTHEEASTERNDANISHSYSTEMOPERATOR,ELKRAFTSYSTEM,LARGEOFFSHOREWINDFARMATRODSANDBYTHEYEAR2003THEINSTALLEDCAPACITYINONLANDSETTINGSANDINCOMBINEDHEATPOWERUNITSUHPWILLINCREASEASWELL,WHILSTTHEPOWERPRODUCTIONANDCONTROLABILITYOFTHECONVENTIONALPOWERPLANTSWITHRESPECTTOVOLTAGEANDFREQUENCYAREREDUCEDINTHEYEARSTOCOME,THEPOWERPRODUCTIONPATTERNINTHEDANISHPOWERSYSTEMWILLCHANGEFROMTHEPOWERSUPPLYFROMCONVENTIONALPOWERPLANTSASITISKNOWNTODAYTOAPOWERSUPPLYMIX,WHEREABOUT3040OFPOWERCONSUMPTIONINAVERAGEISCOVEREDBYWINDPOWERINOTHERWORDS,THEPOWERTECHNOLOGYWILLUNDERGOCHANGESFROMAWELLKNOWNTECHNOLOGYBUILTUPABOUTCONVENTIONALPOWERPLANTSTOAPARTLYUNKNOWNTECHNOLOGYWINDPOWERINTHEYEARTOCOMEITWILLBEFOCUSINGONMAINTAININGPOWERSYSTEMSTABILITYANDVOLTAGESTABILITY,FOREXAMPLEATASHORTCIRCUITFAULT,ENSURINGPOWERSUPPLYSAFETYANDOTHERIMPORTANTTASKSASAMOUNTOFWINDPOWERISDRASTICALLYINCREASINGTHISSITUATIONMAKESITNECESSARYTOFINDSOLUTIONSWITHRESPECTTOMAINTAININGDYNAMICSTABILITYOFTHEPOWERSYSTEMWITHLARGEAMOUNTOFWINDPOWERANDITSRELIABLEOPERATIONTHESESOLUTIONSAREBASEDONANUMBEROFREQUIREMENTSTHATAREFORMULATEDWITHRESPECTTOOPERATIONOFTHELARGEOFFSHOREWINDFARMSANDTHEEXTERNALPOWERSYSTEMINCASEOFFAILUREEVENTSINTHEEXTERNALSYSTEMTHEPAPERCONTAINSSEPARATESUBJECTSDEALINGWITHDESIGNOFWINDMILLSFORLARGEOFFSHOREAPPLICATIONSANDTHEIRCONTROLTHATSHALLBETAKENINTOACCOUNTWITHRESPECTTOIMPROVINGTHESHORTTERMVOLTAGESTABILITY1SYSTEMSTABILITYREQUIREMENTSINTERMSOFSHORTTERMVOLTAGESTABILITY,THEMAJORGOALISTHEVOLTAGEREESTABLISHINGAFTERFAILUREEVENTSINTHEPOWERSYSTEMWITHLARGEAMOUNTOFWINDPOWERTHETRANSMISSIONSYSTEMOPERATORISRESPONSIBLEFORMAINTAININGPOWERSYSTEMSTABILITYANDRELIABLEPOWERSUPPLYASTHESITUATIONISTODAY,THEMAJORITYOFTHEDANISHWINDMILLSONLANDARESTALLWINDTURBINESEQUIPPEDWITHCONVENTIONALINDUCTIONGENERATORSANDACCONNECTEDTOTHEPOWERSYSTEMINCASEOFASHORTCIRCUITFAULTINTHEPOWERSYSTEM,THOSEWINDMILLSAREEASILYOVERSPEEDEDAND,THEN,AUTOMATICALLYDISCONNECTEDFROMTHEPOWERSYSTEMANDSTOPPEDSUCHAUTOMATICDISCONNECTIONSWILLBEVERYFASTANDORDEREDBYTHEWINDMILLPROTECTIONSYSTEMRELAYSETTINGSWHENTHEONLANDWINDMILLSAREAUTOMATICALLYDISCONNECTED,THEREISNODYNAMICREACTIVECOMPENSATIONDEMANDSRELATEDTOTHEM,DESPITETHEIRLARGEPOWERCAPACITYWHENTHEVOLTAGEISREESTABLISHED,THEONLANDWINDMILLSWILLBEAUTOMATICALLYRECONNECTEDTOTHEPOWERSYSTEMIN1015MINAFTERWARDSANDCONTINUETHEIROPERATION,THEONLANDWINDMILLRELAYSETTINGSAREDECIDEDBYTHEWINDMILLMANUFACTURERSORTHEWINDMILLOWNERSANDTHESE,ASUSUAL,CANNOTBECHANGEDBYTHETRANSMISSIONSYSTEMOPERATORINCASEOFTHELARGEOFFSHOREWINDFARMS,THEPOWERSYSTEMOPERATORHASFORMULATEDTHESPECIFICATIONSFORCONNECTINGWINDFARMTOTRANSMISSIONNETWORKINACCORDANCEWITHTHESPECIFICATIONS,THEVOLTAGESTABILITYATFAILUREEVENTSINTHEEXTERNALPOWERSYSTEMSHALLBEMAINTAINEDWITHOUTANYSUBSEQUENTIALDISCONNECTIONOFTHELARGEOFFSHOREWINDFARMSESTABLISHINGDYNAMICREACTIVECOMPENSATIONOFTHELARGEOFFSHOREWINDFARMSCANBE,THEREFORE,NECESSARYTHEAMOUNTOFDYNAMICREACTIVECOMPENSATIONDEPENDS,GENERALLY,ONTHEWINDMILLTECHNOLOGYANDINTHEWINDFARMSANDISINFLUENCEDBYTHEWINDMILLELECTRICALANDMECHANICALPARAMETERSINOTHERCOUNTRIES,SIMILARSPECIFICATIONSMAYBEFOUNDASTHERESULTOFLARGEINCORPORATIONOFWINDPOWERINTOTHELOCALPOWERSYSTEM3WINDFARMMODELTHEWINDMILLTECHNOLOGYINOFFSHORESETTINGSHASTOBEROBUST,DEVELOPEDANDKNOWNPRACTICALAPPLICATIONSTHEWINDTURBINECONCEPTWITHCONVENTIONALINDUCTIONGENERATORSHASBEENINOPERATIONINONLANDSETTINGSINDENMARKDURINGMANYYEARS,WHICHISWHYITMAYBECONSIDEREDTHATTHISTECHNOLOGYWILLBEUSEDOFFSHOREASWELLTHEWINDTURBINESAREEQUIPPEDWITHBLADEANGLECONTROLSYSTEMPITCHORACTIVESTALLTHATMAKEITPOSSIBLETOADJUSTTHESETPOINTSOFTHEWINDTURBINESBYTHEBLADEBYTHEBLADEANGLEADJUSTMENTSTHECOMPLETEREPRESENTATIONOFTHEWINDFARMISCHOSENBECAUSETHECOMMONLYASKEDQUESTIONCONCERNINGLARGEWINDFARMSISWHETHERTHERECANBEELECTROMECHANICALINTERACTIONBETWEENALARGENUMBEROFTHECLOSELYPLACEDWINDMILLSEXCITEDBYDISTURBANCESINTHEPOWERSYSTEMWHENTHEWINDMILLSAREWORKINGATDIFFERENTSETPOINTS,EQUIPPEDWITHRELATIVELYSOFTSHAFTSANDEVENHAVINGDIFFERENTMECHANICALDATA,ANDEQUIPPEDWITHCONTROLSYSTEMS,FORINSTANCEPITCHTHEMODELOFTHEOFFSHOREWINDFARMISIMPLEMENTEDINTHEDYNAMICSIMULATIONTOOLPSS/EANDCONSISTSOF80WINDTURBINESOF2MWPOWERCAPACITYEACH,SEEFIG1EACHWINDTURBINEISSIMULATEDBYAPHYSICALWINDMILLMODELCONSISTINGOF1THEINDUCTIONGENERATORMODELWITHREPRESENTATIONOFTHESTATORTRANSIENTS,2THEWINDMILLSHAFTSYSTEMMODEL,3THEAERODYNAMICMODELOFTHEWINDTURBINE,4THEPITCHCONTROLSYSTEMGIVENBYTHECONTROLLOGICANDTHEBLADESERVOFORCOMPUTATIONOFWINDTURBINEAERODYNAMICSTHEREAREUSEDAIRFOILDATAFORA2MWPITCHWINDMILLEQUIPPEDWITHANINDUCTIONGENERATOREACHWINDTURBINEISVIAITS07KV/30KVCONNECTEDTOTHEWINDFARMINTERNALNETWORKTHEINTERNALNETWORKISORGANISEDINEIGHTROWSWITH10WINDTURBINESINEACHROWWITHINTHEROWS,THEWINDTURBINESARECONNECTEDTHROUGHTHE30KVSEACABLESTHEDISTANCEBETWEENTWOWINDTURBINESINTHESAMEROWIS500MANDTHEDISTANCEBETWEENTWOROWSIS850MTHEROWSARETHROUGHTHE30KVSEACABLESCONNECTEDTOTHEOFFSHOREPLATFORMWITH30KV/132KVTRANSFORMERAND,THEN,THROUGHTHE132KVSEA/UNDERGROUNDCABLETOTHECONNECTIONPOINTINTHETRANSMISSIONSYSTEMONLANDTHEREISCHOSENANACCONNECTIONOFTHEOFFSHOREWINDFARMTOTHETRANSMISSIONNETWORKANIRREGULARWINDDISTRIBUTIONOVERTHEWINDFARMAREATHEREISASSUMEDSINCETHEWINDTURBINESARESHADOWINGEACHOTHERFORINCOMINGWINDTHEEFFICIENCYOFTHEWINDFARMIS93ATTHEGIVENWINDDISTRIBUTIONANDTHEPOWERPRODUCTIONPATTERNISSHOWNINFIG1FURTHERMORE,THEWINDMILLINDUCTIONGENERATORSHAVEALITTLEDIFFERENTSHORTCIRCUITCAPACITIESVIEWEDFROMTHEIRTERMINALSINTOTHEINTERNALNETWORKANDTHISISWHYTHEWINDTURBINEINITIALSETPOINTSAREDIFFERENTTHESHORTCIRCUITCAPACITYFROMTHEWINDFARMCONNECTIONPOINTINTOTHETRANSMISSIONNETWORKIS1800MVAINALLTHESIMULATINGEXAMPLES,THEFAILUREEVENTISASHORTCIRCUITFAULTINTHETRANSMISSIONSYSTEMOF150MSOFDURATIONWHENTHEFAULTISCLEARED,THEFAULTEDLINEISTRIPPEDANDTHESHORTCIRCUITCAPACITYISREDUCEDTO1000MVAONLYTHELINETRIPPINGAND,THEN,REDUCINGOFTHESHORTCIRCUITCAPACITYTO1000MVADOESNOTLEADTOVOLTAGEINSTABILITYTHISENSURESTHATPOSSIBLEVOLTAGEINSTABILITYISONLYTHERESULTOFTHESHORTCIRCUITFAULTWITHTHEFOLLOWINGWINDMILLOVERSPEEDING4DYNAMICREACTIVECOMPENSATIONINTHISWORK,THEDYNAMICREACTIVECOMPENSATIONOFTHELARGEOFFSHOREWINDFARMISASVCOFTHECAPACITYTHATWILLBENECESSARYFORMAINTAININGTHESHORTTERMVOLTAGESTABILITYTHEMODELOFTHESVCISASINREF5WHENOPERATINGASSTALLWINDMILLSBLADEANGLECONTROLISPRIMARILYUSEDFOROPTIMIZATIONOFTHEWINDTURBINEMECHANICALPOWERWITHRESPECTTOINCOMINGWINDANDHENCE,THISCONTROLABILITYISNOTNECESSARILYAVAILABLEATFAILUREEVENTSINEXTERNALPOWERSYSTEMWITHRESPECTMAINTAININGTHESHORTTERMVOLTAGESTABILITYTHISIMPLIESTHATTHEPITCHORACTIVESTALLWINDTURBINESMAYOPERATEASCONVENTIONALPASSIVESTALLWINDTURBINES,BYTHESAMEWAYASWINDMILLSONLAND,WITHTHEEXCEPTIONTHATTHEYMAYNOTBEDISCONNECTEDASTHEBASISCASEWITHRESPECTTOTHEOFFSHOREWINDTURBINEDATA,THEROTORWINDINGRESISTANCE,THEGENERATORINERTIA,THEMILLINERTIA,UPR02SHG50SHM52ANDTHESHAFTSTIFFNESS,SEEAPPENDIXARADELK/3IFNODYNAMICREACTIVECOMPENSATIONISAPPLIED,ASHORTCIRCUITFAULTANDAPOSEFAULTLINETRIPPINGWILLRESULTINVOLTAGEINSTABILITY,SEEFIG2THEWINDMILLSWILLBE,THEN,TRIPPEDBYTHEPROTECTIVERELAYSANDPOWERRESERVESOFAPPROX150MWSHALLBEFOUNDIMMEDIATELYFORVOLTAGEREESTABLISHINGAFTERTHESHORTCIRCUITFAULT,ITWILLBENECESSARYTOUSE100MVAROFDYNAMICREACTIVECOMPENSATIONTHESIMULATEDCURVESFORTHEVOLTAGESANDSPEEDSAREGIVENINFIG3ITISNOTICEDTHATTHEWINDTURBINEDYNAMICPROPERTIESSUCHASTHEVOLTAGE,THEGENERATORSPEEDETC,SHOWAFLUCTUATINGBEHAVIOURINTHEWINDMILLDRIVETRAINSYSTEMDESPITETHEWINDTURBINESHAVEDIFFERENTINITIALSETPOINTS,THEWINDMILLSSHOWACOHERENTRESPONSEATTHEFAILUREEVENTINTHEEXTERNALNETWORKSOTHATTHEFLUCTUATIONSAREINPHASEANDATTHESAMEFREQUENCYTHEFLUCTUATIONFREQUENCYISTHETORSIONALMODEOFTHEWINDMILLSHAFTSWHENTHEVOLTAGEISREESTABLISHED,FLUCTUATIONSINANYELECTRICALORMECHANICALPROPERTIESARENOLONGERSEENTHEREISNOSELFEXCITATIONOFTHEWINDFARMWITHALARGENUMBEROFWINDTURBINESEQUIPPEDWITHINDUCTIONGENERATORSBECAUSETHEINDUCTIONGENERATORSAREPASSIVESYSTEMSINTHATNOSYNCHRONIZINGTORQUEANDFASTCONTROLHAVEBEENAPPLIED6DYNAMICSTABILITYIMPROVEMENTSWITHINCONVENTIONALTECHNOLOGYTHEMOVEMENTEQUATIONOFAWINDMILLINTERMSOFTHELUMPEDMASSSYSTEMIS,1AWHEREANDARETHEMECHANICALTORQUEOFTHEROTATINGMILLANDTHEELECTRICTORQUE,MTERESPECTIVELY,ANDISTHELUMPEDMASSSYSTEMSPEEDL1BWHEREANDARETHEMILLMECHANICALSPEEDANDTHEELECTRICSPEEDOFTHEMGGENERATOR,RESPECTIVELY,ANDATTHEGIVENWIND,WMMWPTTHEDYNAMICSTABILITYLIMITOFTHEWINDMILLISFOUNDFROMTHEMOVEMENTEQUATIONS1AAND1BASTHESPEEDABOVETHEKIPSPEEDWHERETHISSOLUTIONISTHECRITICALLETSPEEDOFTHEWINDMILL,SOTHATEXCEEDINGTHECRITICALSPEED,LEADSTOCCLPROTECTIVEDISCONNECTIONOFWINDMILLSCAUSEDBYOVERSPEEDINGPREVENTIONOFVOLTAGEINSTABILITYTHEORETICALEXPLANATIONFORTHISDEFINITIONCANBEFOUNDINREFANDITSGRAPHICALILLUSTRATIONISSHOWNINFIG4FROMTHEDEFINITIONOFTHEDYNAMICSTABILITYLIMIT,ANUMBEROFSTABILITYIMPROVEMENTMETHODSCANBEINTRODUCEDINTERMSOFCONVENTIONALWINDMILLTECHNOLOGYTHATAREGIVENINTHEFOLLOWING61GENERATORPARAMETERSTHESHAPEOFTHEELECTRICTORQUEVERSUSSPEEDCURVE,ISINFLUENCEDBYTHEGETWINDMILLINDUCTIONGENERATORPARAMETERSINACCORDANCEWITHWHEREISTHEWINDMILLGENERATORTERMINALVOLTAGEASAFUNCTIONOFTHEGENERATORSVSPEED,ANDTHEMACHINEIMPEDANCEWITHGTGTJXRISGIVENBYTHEINDUCTIONGENERATORELECTRICALPARAMETERSSUCHASTHESTATORRESISTANCE,THESTATORREACTANCE,THEMAGNETIZINGREACTANCE,THEROTORRESISTANCE,ANDSRSXMXRTHEROTORREACTANCE,ASGIVENINREFRTHESHORTTERMVOLTAGESTABILITYWILLBEALWAYSIMPROVEDWHENTHECRITICALSPEEDOFTHEWINDMILLISEXPANDEDTHISCANBEREACHEDWHEN1THEVALUESOFANDAREREDUCED,MSX,R2THEVALUEOFTHEROTORRESISTANCE,ISINCREASEDGRAPHICALLYTHISISILLUSTRATEDINCASEOFINCREASINGTHEROTORRESISTANCEVALUE,ISRINCREASINGTHEROTORRESISTANCEVALUE,SEEFIG4RINCREASINGTHEROTORRESISTANCEBYTHEFACTOROF2,ASINTHEEXAMPLE,LEADSTOSIGNIFICANTEXPANDINGOFTHECRITICALWINDMILLSPEED,ANDTHEDYNAMICREACTIVECCOMPENSATIONDEMANDSAREREDUCEDSIGNIFICANTLYWHENTHEROTORRESISTANCEIS,THEREWILLONLYBENECESSARYTOUSE25MVARDYNAMICREACTIVE042UPRCOMPENSATIONTHEVOLTAGEINTHEWINDFARMCONNECTIONPOINTISSHOWNINFIG5THE25MVARDYNAMICREACTIVECOMPENSATIONSHALLBECOMPAREDWITHTHEREACTIVECOMPENSATIONDEMANDSINCASEOFTHEROTORRESISTANCEVALUEOFTHATAREINSECTION50RFOUNDTOBE100MVARTHEDYNAMICREACTIVECOMPENSATIONDEMANDSAREREDUCEDSIGNIFICANTLYONTHEOTHERHAND,THISSOLUTIONLEADSTOINCREASINGTHEPOWERLOSSESINTHEROTORCIRCUITWHENTHEPOWERSYSTEMISINNORMALOPERATIONASWELL62ENFORCINGMECHANICALCONSTRUCTIONITISACOMMONOPINIONTHATWHENTHEINERTIAOFTHEROTATINGSYSTEMISHIGHER,THEMORESTABLEOPERATIONISEXPECTEDINTHEPOWERSYSTEMINPOSTFAULTSITUATIONSINTERMSOFTHEDYNAMICSTABILITYLIMITDEFINITION,THEINERTIAVALUEDOESNOTINFLUENCEONTHEWINDMILLCRITICALSPEEDTWOWINDTURBINESWITHIDENTICALGENERATORDATAANDDIFFERENTINERTIAVALUESAND,WHERE,HAVETHESAMECRITICALSPEED1MH221MHVALUES21CDUETODIFFERENTINERTIAVALUES,THEWINDTURBINESWILL,HOWEVER,ACCELERATEDIFFERENTLYATTHEFAILUREEVENTANDHENCE,HAVETHEDIFFERENTCRITICALFAILURETIMESBECAUSEOF21CTTHIS,THEHEAVYWINDTURBINESSHOWMORESTABLEBEHAVIOURCOMPAREDWITHTINNYWINDTURBINES,ASLONGASTHEFAILURETIMEISNOTTOOLONGINPRACTICALSITUATIONS,THEFAILURETIMEISSHORTENOUGHANDTHEHEAVYWINDTURBINESWILLBEPREFERREDWITHRESPECTTOMAINTAININGTHEVOLTAGESTABILITYWINDMILLSAREEQUIPPEDWITHTHESHAFTSYSTEMSWHERETHEEFFECTIVESHAFTSTIFFNESSVIEWEDFROMTHEGENERATORTERMINALSISRELATIVELYLOWINNORMALOPERATION,THEREWILLBEACCUMULATEDANAMOUNTOFPOTENTIALENERGYINTHESHAFTSANDTHELOWERTHESHAFTSTIFFNESSIS,THEMORETHEPOTENTIALENERGYACCUMULATEDISATASHORTCIRCUITFAULT,THESHAFTSARERELAXINGANDTHEPOTENTIALENERGYISDISENGAGEDINTOTHEGENERATORROTORKINETICENERGYTHISRESULTSINTHEMOREINTENSIVEACCELERATIONOFTHEGENERATORROTORTHECONTRIBUTIONTOTHEGENERATORROTORSPEEDCAUSEDBYTHESHAFTRELAXATIONISINCREASINGTHESHAFT/2GMGKHTSTIFFNESS,K,LEADS,THEREFORE,TOTHEREDUCTIONOFTHEWINDMILLOVERSPEEDINGATFAILUREEVENTS,SEEFIG6,ANDHENCE,TOTHEIMPROVEMENTSOFSHORTTERMVOLTAGESTABILITY,INACCORDANCEWITHTHEDYNAMICSTABILITYLIMITCONSIDERATIONSTHESIMULATIONRESULTSDEALINGWITHDYNAMICREACTIVECOMPENSATIONDEMANDSATVARYINGPARAMETERSOFTHEWINDMILLMECHANICALCONSTRUCTION,AND,ARECOLLECTEDINTABLE1MHKENFORCEMENTOFTHEWINDMILLMECHANICALCONSTRUCTIONHASASIGNIFICANTPOSITIVEEFFECTONIMPROVEMENTOFTHESHORTTERMVOLTAGESTABILITYLITERATUREORIGININTERNATIONALJOURNALOFELECTRICALPOWERENERGYSYSTEMS大型风电场的瞬时稳定和模拟1介绍丹麦当前在陆地和极少海外的放置中有大约2300MW风能,这已经超过了平均能量消费水平的20。此外,二个150MW的大规模海面风电厂的工程已经被宣布。在丹麦的第一个大的海面风电厂2002年以前将会在叙利亚被建造,它是系统操作员ELTRA的区域。这将会在东方丹麦的系统区域中被第一个跟随操作员,ELKRAFT系统在2003年以前就向海面的风电厂转变。在陆地放置中的和在结合的热量单元UHP中的安装的能力也将增加,在关于电压和频率的能量的生产和传统发电厂的控制能力被减少的时候。在未来的数年内,丹麦的电力制度的电力生产式样将会从来自传统电力补给改变,当现在对大约3040耗电量平均的被风能覆盖的一个动力补给混合的之时。换句话说,动力技术将会接受被建造的来自一种众所周知的技术的变化,增加有关对部分未知的技术风动力的传统发电厂。在这一年来它将着重于保持电力系统稳定和电压稳定,举例来说在一个短路中,当风动力的数量大幅增加的时候,确定电力供应安全和其他的重要工作就是必需解决的,就需要用大量的风能和它的可靠操作维持电力系统的动态稳定。2系统稳定需求根据短期的电压稳定,主要的目标是在发生故障之后以大量的风能恢复电压。传输系统操作员负责维持电力系统稳定和可靠的电力供应。今天,丹麦陆地上的多数风车是风力机装备着异步发电机并且直接并网。假使一个电力系统的过失短路,那些风车就容易地被超速,然后,自动地从电力系统中分离而且停止。如此自动的切断将会非常快速而且必须被风车保护制度接替者设定。当那在陆地上的风车自动地被分离,没有动态的起反作用的补偿要求涉及到它们。当电压是恢复后,在陆地上风车将会再自动地然后被连接到电网在1015分钟中的力量制度而且继续它们的运转。陆地上的风车继电器设定被风车制造业者决定或者风车拥有者和这些,像往常一样,不能够被传输系统操作员改变。假使大的海面风场,电力系统操作员已经制定把风场连结到传输网络的规格。符合规格,电压稳定性在外部系统故障时将会被维修在没断开大型海上风场。因此,建立海上风场动力起反作用的补偿是必需的。通常,大的动态反动的补偿靠风车技术上和在风场中而且被风电和机械参数影响。在其他国家,可以找到类似的规定,由于大型风力发电将成为当地电力系统3风场模型在海上设定的风车技术必须是强健的,发展和知名的实际应用。带异步发电机的风轮机观念已经运转在陆地风场的设定在丹麦这些年,是它可能为什么被视为将会被用在海上的技术。风力涡轮机叶片角度控制设有定位或活动档,可以调整结构项的风力涡轮机叶片的调整来完成海面风农场的模型在动态的模拟工具PSS/E中被实现,而且有2MW发电容量的80个用来发电的风车,见图1。风力涡轮机是由每一个物理模拟模型风车包括(1)适应模式与发电机定子的旅客代表、(2)风车槽系统的模式(3)风力涡轮的气动模型,(4)由于球的控制系统,完成伺服控制逻辑风农场的完全表示法被选择,因为共同地被问的问题关于大风农场是否在动力系统可以有干扰激发的很大数量的严密被安置的风车之间的机电互作用,当风车运转在不同的设置点时。装备相对地软的轴和平衡有另外机械数据和装备以控制系统,例如沥青。为风涡轮空气动力学的计算有老的机翼数据为一台2兆瓦风车装备异步电动机。每个风涡轮是通过它的07KV/30KV连接到风场内部网络。内部网络在八列在每列被组织与10个机。在列之内,风轮机通过30千伏海底电缆连接。二个风涡轮之间的距离在同一列是500M,并且二列之间的距离是850M。该列是通过30千伏海底电缆连接到近海平台用30KV/132千伏变压器,然后,通过132千伏海地下电缆对连接点在传动陆地系统。海上风场选择了交流连接到传输网络。一种不规则的风力分布在风场,由于假设是跟踪对方的风力涡轮风来袭风场风轮机效率的93,分布在特定的风力发电方式显示图1。此外,风车发电机入门有点短路能力从不同的终端进入内部网络,这就是最初的风力涡轮点不同短路容量从风场连接点到传输网络里是1800MVA。在所有模仿的例子,失败事件是短路缺点在期间的有持续150MS的传动系统。当故障清除,故障线路强度大,并且短路容量减少到1000MVA。仅线路流畅和减少短路容量到1000MVA,不会导致电压不稳定。这保证可能的电压不稳定仅仅是因风车超速短路而引起的结果。4动态的电抗补偿这方面的工作,有力反应补偿近海风力大农场是SVC的能力,有必要保持短期稳定电压SVC模型在REF中是交流的。5风车停转的操作浆叶角控制为风涡轮机械动力的优化主要使用关于接踵而来的风并且,这控制能力不是必要可利用的在外部电力系统故障中与维护短期电压稳定有关这意味倾斜或有效的延迟作为风力机被常规的停运。同样的方式对风车在陆地也一样,除非他们可能是连接的。作为案例对境外风力涡轮数据,转子绕组阻抗,发电机惯性UPR02,米尔惯量,和轴的坚硬。如果没有应用动SHG50SHM52RADELK/3态电抗性,短路故障和短路线路将导致电压不稳定,见图2。风车将会由保护继电器和后备保护进行加强。150MW将要立刻上马。为恢复短路故障以后的电压,使用100MVAR动态电抗补偿将是必要的。图3给出了模拟仿真中电压和速度曲线。发现风力涡轮动力特性,例如电压、发电机速度等,呈现波动行为在动力传动系统虽然风力涡轮机已初步确定不同点,显示了风车一致反应事件未对外的交通运输网络,使处于波动阶段,在同一频率波动的频率是极限模式风车槽当电压恢复后,任何电气或机械特性波动已不再出现没有自励的风场有大量配备异步发电机的风力涡轮发电机因为异步发电机是被动的,并没有同步扭矩迅速控制了应用6改进传统技术动态稳定性风车运动的公式计算的质量体系是1A和分别是机械转矩和电磁转矩,是角速度。MTEL1B和分别是发电机的机械角速度和电磁角速度,是特定的风。MGMMWPT动态稳定范围内发现的动作方程式1A和1B作为角速度当时。解LET决方案是风车的临界速率,所以过度的临界速率,因为风车超速运行CCL(防止电压不稳定性),导致保护断开。在REF中可以发现这个定义的理论解释,它的绘画插图如图4。从动态稳定性极限的定义,在以下被给的一定数量的稳定改善方法可以被介绍根据常规风车技术。61发电机参数电磁转矩对速度曲线的形状,由风车异步发电机参数影响依照GET2风车发电机接头电压作为发电机速度的公式,发电机阻抗为SVGTGTJXR为异步电动机电的参数例如定子电阻,定子电抗,磁阻抗,转子电阻,SRSXMR转子电抗,在REF中给出。RX短期电压稳定,当风车的临界车速被扩展,总将改进。它可以被影响当以下情况(1)AND的值下降MS,RX(2)转子电阻的值上升转子电阻值的上升在图中表示,转子电阻值慢慢上升,见图4。增加电动子抵抗由因素2,像在例子中,导致重大扩展重要风车速度,显C著减少动态电抗性补偿要求。当转子电阻为,只将有必要使用042UPR25MVAR电压在风场连接点显示在的动态电抗性补偿。见图5。25MVAR动态电抗性补偿与电抗性补偿要求比较,在那的情况下转子电阻值在第5部分被发现的100MVAR。显著减少动态电抗性补偿要求。另一方面,当0R动力系统在正常运行时,这种解答在电动子电路导致增加功率损失。62机械工程实施它是一个共同的观点,当转动的系统的惯性更高时,更加稳定的操作在动力系统在故障情况下被期望。根据动态稳定性极限定义,惯性值对风车临界速率不影响。二个风轮机以相同发电机数据和不同的惯量值和,当时,有同样的临界速率值1MH21M2H。21C由于不同的惯量值,风轮机将会不同地加速在故障时并且有不同的关键失效时间。因此,重的风轮机显示更好的稳定行为比较锡风涡轮,只要故障时间不21T是太长的。在实用情况,故障时间是足够短的,并且重的风轮机将是首选关于维护电压稳定。风车装备轴系统,从发电接头观看的有效的轴硬度是低的在正常运行,在轴那里将被积累相当数量势能,并且轴硬度越低,势能积累的越多。在短路故障,轴是松弛的,并且势能被释放到发电机转子动能。这导致发电机转子有更大的加速度。对轴放松造成的发电机转子速度的贡献是。增加轴硬度K,因此/2GMGKHT导致在故障时风车超速的减少,见图,并且导致瞬间电压稳定的改善,与动态稳定性极限考虑符合。模仿结果应付动态电抗性补偿要求在风车机械建筑的变化的参量,和,MHK收集在表1中。风车机械建筑的执行有一个重大正面作用在短期电压稳定的改善。文献来源国际科学杂志电力能源系统10/301712C620轴拨杆的工艺规程及钻216孔的钻床夹具设计09/211339CA6140车床拨叉零件的机械加工工艺规程及夹具设计83100308/301537CPU风扇后盖的注塑模具设计09/201619GDC956160工业对辊成型机设计08/301545LS型螺旋输送机的设计10/072343LS型螺旋输送机设计09/201623P90B型耙斗式装载机设计09/082017PE10自行车无级变速器设计10/070923话机机座下壳模具的设计与制造09/082020T108吨自卸车拐轴的断裂原因分析及优化设计09/211339XY型数控铣床工作台的设计09/082025YD5141SYZ后压缩式垃圾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论