中文翻译.docx

用于连续纤维增强热塑性复合材料的3D打印:机制和性能【中卫6255字】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:9855618    类型:共享资源    大小:1.66MB    格式:ZIP    上传时间:2018-03-31 上传人:闰*** IP属地:河南
15
积分
关 键 词:
用于 连续 纤维 增强 塑性 复合材料 打印 机制 以及 性能 机能 中卫
资源描述:
用于连续纤维增强热塑性复合材料的3D打印:机制和性能【中卫6255字】,用于,连续,纤维,增强,塑性,复合材料,打印,机制,以及,性能,机能,中卫
内容简介:
ALLCONTENTFOLLOWINGTHISPAGEWASUPLOADEDBYXIAOYONGTIANON17OCTOBER2017THEUSERHASREQUESTEDENHANCEMENTOFTHEDOWNLOADEDFILESEEDISCUSSIONS,STATS,ANDAUTHORPROFILESFORTHISPUBLICATIONATHTTPS/WWWRESEARCHGATENET/PUBLICATION/3138294643DPRINTINGFORCONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESMECHANISMANDPERFORMANCEARTICLEINRAPIDPROTOTYPINGJOURNALJANUARY2017DOI101108/RPJ0820150098CITATIONS9READS5715AUTHORS,INCLUDINGXIAOYONGTIANXIANJIAOTONGUNIVERSITY41PUBLICATIONS333CITATIONSYICAOXIANJIAOTONGUNIVERSITY8PUBLICATIONS41CITATIONSSEEPROFILESEEPROFILESOMEOFTHEAUTHORSOFTHISPUBLICATIONAREALSOWORKINGONTHESERELATEDPROJECTS3DPRINTINGONCOMPOSITESVIEWPROJECT3DPRINTINGFORMETAMATERIALSVIEWPROJECTRAPIDPROTOTYPINGJOURNAL3DPRINTINGFORCONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESMECHANISMANDPERFORMANCECHUNCHENGYANGXIAOYONGTIANTENGFEILIUYICAODICHENLIARTICLEINFORMATIONTOCITETHISDOCUMENTCHUNCHENGYANGXIAOYONGTIANTENGFEILIUYICAODICHENLI,2017,“3DPRINTINGFORCONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESMECHANISMANDPERFORMANCE“,RAPIDPROTOTYPINGJOURNAL,VOL23ISS1PP209215PERMANENTLINKTOTHISDOCUMENTHTTP/DXDOIORG/101108/RPJ0820150098DOWNLOADEDON01MARCH2017,AT0110PTREFERENCESTHISDOCUMENTCONTAINSREFERENCESTO17OTHERDOCUMENTSTOCOPYTHISDOCUMENTPERMISSIONSEMERALDINSIGHTCOMTHEFULLTEXTOFTHISDOCUMENTHASBEENDOWNLOADED260TIMESSINCE2017USERSWHODOWNLOADEDTHISARTICLEALSODOWNLOADED2017,“STRUCTUREANDMECHANICALBEHAVIOROFBIGAREAADDITIVEMANUFACTURINGBAAMMATERIALS“,RAPIDPROTOTYPINGJOURNAL,VOL23ISS1PP181189HTTP/DXDOIORG/101108/RPJ12201501832017,“INVESTIGATIONOFADDITIVEMANUFACTURINGSURFACESMOOTHINGPROCESS“,RAPIDPROTOTYPINGJOURNAL,VOL23ISS1PP201208HTTP/DXDOIORG/101108/RPJ1120150176ACCESSTOTHISDOCUMENTWASGRANTEDTHROUGHANEMERALDSUBSCRIPTIONPROVIDEDBYEMERALDSRM367413FORAUTHORSIFYOUWOULDLIKETOWRITEFORTHIS,ORANYOTHEREMERALDPUBLICATION,THENPLEASEUSEOUREMERALDFORAUTHORSSERVICEINFORMATIONABOUTHOWTOCHOOSEWHICHPUBLICATIONTOWRITEFORANDSUBMISSIONGUIDELINESAREAVAILABLEFORALLPLEASEVISITWWWEMERALDINSIGHTCOM/AUTHORSFORMOREINFORMATIONABOUTEMERALDWWWEMERALDINSIGHTCOMEMERALDISAGLOBALPUBLISHERLINKINGRESEARCHANDPRACTICETOTHEBENEFITOFSOCIETYTHECOMPANYMANAGESAPORTFOLIOOFMORETHAN290JOURNALSANDOVER2,350BOOKSANDBOOKSERIESVOLUMES,ASWELLASPROVIDINGANEXTENSIVERANGEOFONLINEPRODUCTSANDADDITIONALCUSTOMERRESOURCESANDSERVICESEMERALDISBOTHCOUNTER4ANDTRANSFERCOMPLIANTTHEORGANIZATIONISAPARTNEROFTHECOMMITTEEONPUBLICATIONETHICSCOPEANDALSOWORKSWITHPORTICOANDTHELOCKSSINITIATIVEFORDIGITALARCHIVEPRESERVATIONRELATEDCONTENTANDDOWNLOADINFORMATIONCORRECTATTIMEOFDOWNLOADDOWNLOADEDBYXIANJIAOTONGUNIVERSITYAT011001MARCH2017PT2093DPRINTINGFORCONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESMECHANISMANDPERFORMANCECHUNCHENGYANG,XIAOYONGTIAN,TENGFEILIU,YICAOANDDICHENLISTATEKEYLABORATORYOFMANUFACTURINGSYSTEMSENGINEERING,XIANJIAOTONGUNIVERSITY,XIAN,CHINAABSTRACTPURPOSECONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESCFRTPCSAREBECOMINGMORESIGNIFICANTININDUSTRIALAPPLICATIONSBUTARELIMITEDBYTHEHIGHCOSTOFMOLDS,THEMANUFACTURINGBOUNDEDNESSOFCOMPLEXCONSTRUCTIONSANDTHEINABILITYOFSPECIALFIBERALIGNMENTTHEPURPOSEOFTHISPAPERISTOPUTFORWARDANOVELTHREEDIMENSIONAL3DPRINTINGPROCESSFORCFRTPCSTOREALIZETHELOWCOSTRAPIDFABRICATIONOFCOMPLICATEDCOMPOSITECOMPONENTSDESIGN/METHODOLOGY/APPROACHFORTHISPURPOSE,THEMECHANISMOFTHEPROPOSEDPROCESS,WHICHCONSISTSOFTHETHERMOPLASTICPOLYMERMELTING,THECONTINUOUSFIBERHOTDIPPINGANDTHEIMPREGNATEDCOMPOSITESEXTRUDING,WASINVESTIGATEDA3DPRINTINGEQUIPMENTFORCFRTPCSWITHANOVELCOMPOSITEEXTRUSIONHEADWASDEVELOPED,ANDSOMECOMPOSITESAMPLESHAVEBEENFABRICATEDFORSEVERALMECHANICALTESTSMOREOVER,THEINTERFACEPERFORMANCEWASCLARIFIEDWITHSCANNINGELECTRONMICROSCOPYIMAGESFINDINGSTHERESULTSSHOWEDTHATTHEFLEXURALSTRENGTHANDTHETENSILESTRENGTHOFTHESE10WTCONTINUOUSCARBONFIBERCCF/ACRYLONITRILEBUTADIENESTYRENEABSSPECIMENSWEREIMPROVEDTO127AND147MPA,RESPECTIVELY,FARGREATERTHANTHEONEOFABSPARTSANDCLOSETOTHEONEOFCCF/ABSINJECTIONMOLDINGWITHTHESAMEFIBERCONTENTMOREOVER,THESETESTRESULTSALSOEXPOSEDTHEVERYLOWINTERLAMINARSHEARSTRENGTHONLY281MPAANDTHEINFERIORINTERFACEPERFORMANCETHESERESULTSWEREEXPLAINEDBYTHEWEAKMESO/MICRO/NANOSCALEINTERFACESINTHE3DPRINTEDCOMPOSITEPARTSORIGINALITY/VALUETHE3DPRINTINGPROCESSFORCFRTPCSWITHITSCONTROLLEDCAPABILITIESFORTHEORIENTATIONANDDISTRIBUTIONOFFIBERHASGREATPOTENTIALFORMANUFACTURINGOFLOADBEARINGCOMPOSITEPARTSINTHEINDUSTRIALCIRCLEKEYWORDSPERFORMANCE,3DPRINTING,MECHANISM,CONTINUOUSFIBER,THERMOPLASTICCOMPOSITESPAPERTYPERESEARCHPAPER1INTRODUCTIONCONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESCFRTPCSAREBECOMINGMORESIGNIFICANTININDUSTRIALAPPLICATIONSBECAUSEOFTHEIRINHERENTADVANTAGESSUCHASEXCELLENTMECHANICALANDCHEMICALPERFORMANCE,RECYCLINGANDPOTENTIALLIGHTWEIGHTSTRUCTURESCHENETAL,2011MITSCHANGETAL,2003PERRINETAL,2003FORYEARS,SEVERALFABRICATIONMETHODSFORCFRTPCSHAVEBEENDEVELOPED,SUCHASVACUUMFORMING,FILAMENTWINDING,PULTRUSION,BLADDERASSISTEDMOLDINGANDCOMPRESSIONNEVERTHELESS,THELIMITATIONSOFTHESEPROCESSESLIEINTHEHIGHCOSTOFMOLDS,THEMANUFACTURINGBOUNDEDNESSOFTHEPARTSWITHCOMPLEXCONSTRUCTIONSANDTHEINABILITYOFSPECIALFIBERALIGNMENT,LEADINGTOTHEBOTTLENECKSFORTHEWIDEAPPLICATIONSOFCFRTPCSININDUSTRIALPRODUCTIONANDPEOPLESDAILYLIFEPERRINETAL,2003FUJIHARAETAL,2004FUSEDDEPOSITIONMODELINGFDM,ASONEOFTHEMOSTCOMMONLYUSEDLOWCOSTTHREEDIMENSIONAL3DPRINTINGTECHNOLOGIES,HASBEENASIGNIFICANTMETHODTOREALIZETHETRANSFORMATIONFROMCONCEPTUALIZATIONTOTHEPRODUCTSTHEPARTSCANBEMANUFACTUREDRAPIDLYANDDIRECTLYFROMCOMPUTERAIDEDDESIGNCADMODELWITHOUTGEOMETRYLIMITATIONANDSPECIFICTOOLINGANDWITHHIGHMATERIALUTILIZATIONINTHEFDMPROCESS,THEPOLYMERICFILAMENTISCONTINUOUSLYFEDINTOTHENOZZLEANDHEATEDTOASEMILIQUIDSTATE,ANDTHENTHETHERMOPLASTICMATERIALISEXTRUDEDONTOTHEPREVIOUSLAYERALONGTHECROSSSECTIONCONTOURANDTHEFILLINGTRAJECTORYATTHESAMETIME,THEEXTRUDEDMATERIALRAPIDLYSOLIDIFIESANDADHERESWITHTHESURROUNDINGMATERIALTOACCUMULATETHEREQUIREDCOMPLEXPLASTICPARTSAHNETAL,2002MAGALHAESETAL,2014HENCE,INCOMPARISONWITHTHECONVENTIONALFABRICATIONPROCESSOFCOMPOSITESCHARACTERIZEDBYIMPREGNATIONANDSOLIDIFICATIONOFTHEMATRIX,FDMPROVIDESAPOSSIBILITYFORMANUFACTURINGCOMPLEXFUNCTIONALANDSTRUCTURALPARTSWITHCFRTPCSSCARCELYANYRESEARCHLITERATUREMENTIONEDFDMFORCFRTPCS,ANDONLYAFEWSTUDIESREPORTEDFDMFORSHORTORTHECURRENTISSUEANDFULLTEXTARCHIVEOFTHISJOURNALISAVAILABLEONEMERALDINSIGHTATWWWEMERALDINSIGHTCOM/13552546HTMRAPIDPROTOTYPINGJOURNAL23/12017209215EMERALDPUBLISHINGLIMITEDISSN13552546DOI101108/RPJ0820150098THISWORKWASSUPPORTEDBYNATIONALNATURALSCIENCEFOUNDATIONOFCHINANO51575430,THESTATEKEYLABORATORYOFROBOTICSANDSYSTEMSHITSKLRS2015ZD02,THEFUNDAMENTALRESEARCHFUNDSFORTHECENTRALUNIVERSITIES,XJTU,ANDTHERESEARCHFUNDSFROMSCHOOLOFMECHANICALENGINEERING,STATEKEYLABORATORYOFMANUFACTURINGSYSTEMSENGINEERING,XJTURECEIVED5AUGUST2015REVISED22FEBRUARY2016ACCEPTED25FEBRUARY2016DOWNLOADEDBYXIANJIAOTONGUNIVERSITYAT011001MARCH2017PT2103DPRINTINGCHUNCHENGYANG,XIAOYONGTIAN,TENGFEILIU,YICAOANDDICHENLIRAPIDPROTOTYPINGJOURNALVOLUME23NUMBER12017209215LONGFIBERREINFORCEDFEEDSTOCKTEKINALPETAL2014INVESTIGATEDSHORTFIBERREINFORCEDACRYLONITRILEBUTADIENESTYRENEABSCOMPOSITESASAFEEDSTOCKFOR3DPRINTINGINTERMSOFTHEIRPROCESSIBILITY,MICROSTRUCTUREANDMECHANICALPERFORMANCEZHONGETAL2001MODIFIEDABSASAFDMFEEDSTOCKBYTHESHORTGLASSFIBER,PLASTICIZERANDCOMPATIBILIZERANDFOUNDTHATTHESTRENGTHOFANABSFILAMENTWASSIGNIFICANTLYIMPROVEDATTHEEXPENSEOFREDUCEDFLEXIBILITYANDHANDLEABILITYGRAYETAL1998ADEVELOPEDPOLYPROPYLENESTRANDSREINFORCEDWITHTHERMOTROPICLIQUIDCRYSTALLINEPOLYMERTLCPFIBERSFORFDMPROCESSANDINVESTIGATEDTHEEFFECTSOFFDMPROCESSINGCONDITIONSONSHORTTLCPFIBERREINFORCEDPARTSINTHISPAPER,THEMECHANISMOF3DPRINTINGTECHNOLOGYFORBOTHTHEPREPARATIONANDTHEPRINTINGOFCFRTPCSWEREINVESTIGATEDSEVERALMECHANICALTESTS,SUCHASTHREEPOINTBENDINGTEST,TENSILETESTANDINTERLAMINARSHEARTEST,WERECONDUCTEDTOCHARACTERIZETHEMECHANICALPROPERTIESOFTHEPRINTEDCFRTPCSPARTSTHERESULTSSHOWEDTHATTHEFLEXURALSTRENGTHANDTHETENSILESTRENGTHOFTHESE10WTCONTINUOUSCARBONFIBERCCF/ABSSPECIMENSWEREIMPROVEDTO127AND147MPA,RESPECTIVELY,FARGREATERTHANTHEONEOFABSPARTSANDCLOSETOTHEONEOFCCF/ABSINJECTIONMOLDINGWITHTHESAMEFIBERCONTENTMOREOVER,THEINTERFACESBETWEENCONTINUOUSFIBERANDTHERMOPLASTICMATRIXWEREOBSERVEDBYUSINGSCANNINGELECTRONMICROSCOPYSEMIMAGESTOEVALUATETHEIRINFLUENCEONTHEMECHANICALPROPERTIESOFTHEPRINTEDCFRTCSSAMPLESLARGECOMPONENTSWEREALSOFABRICATEDTODEMONSTRATETHEFEASIBILITYOFTHEPROPOSEDPROCESS2MECHANISMOFTHREEDIMENSIONALPRINTINGPROCESSFORCONTINUOUSFIBERREINFORCEDTHERMOPLASTICCOMPOSITESBASEDONFUSEDDEPOSITIONMODELINGASCHEMATICREPRESENTATIONOFTHE3DPRINTINGPROCESSFORCFRTPCSISSHOWNINFIGURE1INTHEPROCESSFORCFRTPCS,PHYSICALPARTSWITHCOMPLEXCONSTRUCTIONSAREBUILTBYTHEDEPOSITIONOFATHERMOPLASTICPOLYMERICMATERIALWITHCONTINUOUSFIBERSINSIDETHENOVELEXTRUSIONHEADRECEIVESTHEFILAMENTOFTHERMOPLASTICMATERIALANDHEATSITTOASEMILIQUIDSTATEINTHENOZZLEMEANWHILE,CONTINUOUSFIBERISFEDFROMTHEFIBERSUPPLYCOILANDGOESTHROUGHTHEINNERBOREOFTHEEXTRUSIONHEADTOTHENOZZLEHENCE,THECONTINUOUSFIGURE1SCHEMATICREPRESENTATIONOFTHE3DPRINTINGPROCESSFORCFRTPCSFIBERISINFILTRATEDANDCOATEDBYTHEMOLTENTHERMOPLASTICPOLYMERINSIDETHENOZZLE,ANDTHEIMPREGNATEDCOMPOSITESCANBEEXTRUDEDOUTFROMTHEEGRESSOFTHENOZZLEWHENTHEEXTRUDEDMATERIALREACHESTHESURFACEOFTHEPART,ITSOLIDIFIESRAPIDLYANDADHERESTOTHEPREVIOUSLAYERSOTHATTHEFIBERCANBEPULLEDOUTCONTINUALLYBYTHEFOREGOINGFIBERINSIDETHEPARTONTHEOTHERHAND,THEEXTRUSIONHEAD,WHICHISCONNECTEDTOXYMOTIONMECHANISM,CANMOVEALONGTHECROSSSECTIONCONTOURANDTHEFILLINGTRAJECTORYOBTAINEDFROMA3DCADSYSTEMANDGENERATESINGLELAYEROFTHEPARTAFTERONELAYERISCOMPLETED,THEBUILDINGPLATFORMPLACEDONALIFTMECHANISMMOVESINTHEZAXISDIRECTIONBYANINCREASEEQUALTOTHELAYERTHICKNESSTHEPROCESSISREPEATEDUNTILTHEPARTISFINISHEDBYUSINGTHEPROPOSED3DPRINTINGMECHANISM,COMPOSITESPARTSCANBEFABRICATEDBYTHEDEPOSITIONOFTHECOMPOUNDEDMATERIALLINEBYLINEANDLAYERBYLAYERINTHEFDMPROCESSFORCFRTPCSABS,POLYLACTICACID,POLYETHERETHERKETONE,ETCCANBEUSEDASTHETHERMOPLASTICFILAMENTINTHISPROCESS,ANDTHECONTINUOUSFIBERCOULDBECARBONFIBER,GLASSFIBER,NATURALFIBER,ETCMITSCHANGETAL,20033EXPERIMENTALPROCEDURES31EQUIPMENTANDMATERIALASSHOWNINFIGURE2A,THEFDMBASEDEQUIPMENTFORCFRTPCSWASINDEPENDENTLYDEVELOPEDANDSETUPINTHEPRESENTRESEARCH,WHICHCONSISTSOFEXTRUSIONHEAD,CONTROLSYSTEM,BUILDINGPLATFORM,XYMOTIONMECHANISM,ETCFIGURE2IMAGESOFATHEFDMBASED3DPRINTINGEQUIPMENTFORCFRTPCSANDBTHEWORKINGPROCESSOFTHEEXTRUSIONHEADDOWNLOADEDBYXIANJIAOTONGUNIVERSITYAT011001MARCH2017PT2113DPRINTINGCHUNCHENGYANG,XIAOYONGTIAN,TENGFEILIU,YICAOANDDICHENLIRAPIDPROTOTYPINGJOURNALVOLUME23NUMBER12017209215FIGURE2BSHOWSTHEWORKINGPROCESSOFTHEEXTRUSIONHEAD,WHICHRECEIVESTHERMOPLASTICPOLYMERANDCONTINUOUSFIBERTOBUILDACONTINUOUSFIBERREINFORCEDCOMPOSITESPARTINTHISPAPER,ABS/175MMFROMFLASHFORGECORPINCHINAHASBEENUSEDASTHETHERMOPLASTICMATERIAL,ANDCARBONFIBER1,000FIBERSINABUNDLEFROMANJIECORPINCHINAHASBEENUSEDASTHEREINFORCEMENTTHECCF/ABSSPECIMENSWEREALLPREPAREDBYTHEAFOREMENTIONEDEQUIPMENTFORTHEMEASUREMENTOFMECHANICALPROPERTIESTHEMAINPRINTINGPROCESSPARAMETERSINFDMFORCCF/ABSSPECIMENSARELISTEDINTABLEI,INWHICHCASETHECARBONFIBERCONTENTINTHESESPECIMENSCOULDAPPROXIMATELYEQUAL10WT32MECHANICALTESTSSEVERALMECHANICALTESTS,INCLUDINGTHREEPOINTBENDINGTEST,TENSILETESTANDINTERLAMINARSHEARTEST,WERECONDUCTEDTOOBTAINTHECORRESPONDINGMECHANICALSTRENGTHSOFTHESECCF/ABSSPECIMENSUSINGANELECTROHYDRAULICSERVOMECHANICALTESTINGMACHINEPLD5KN,LETRYCORP,CHINAFRACTURESURFACESOFTHETESTEDSPECIMENSWEREFIRSTSPUTTERCOATEDWITHCONDUCTORSNEXT,SEMMICROGRAPHSOFTHEFRACTURESURFACESWEREOBSERVEDWITHAHITACHIS3000NSEMATANACCELERATIONVOLTAGEOF15KVTABLEI3DPRINTINGPROCESSPARAMETERSFORCCF/ABSSPECIMENSDESCRIPTIONVALUENOZZLEDIAMETER08MMBEADWIDTH08MMLAYERTHICKNESS05MMEXTRUSIONTEMPERATURE230CENVELOPETEMPERATURE90CFEEDINGSPEED5MM/SPRINTINGSPEED10MM/S321THREEPOINTBENDINGTESTTHREEPOINTBENDINGTESTSWERECONDUCTEDACCORDINGTOISO141251998FIBERREINFORCEDPLASTICCOMPOSITESDETERMINATIONOFFLEXURALPROPERTIESSTANDARDTHATTHESPECIMENISHELDBYTWOSUPPORTSANDLOADEDINTHEMIDDLEWITHAFORCEUNTILTHETESTSPECIMENFRACTURESFIGURE3ASHOWSTHEOPERATIONSPECIFICATIONOFTHEBENDINGSTANDARDANDTHEDIMENSIONSOFTHEBENDINGSPECIMENSINWHICHTHECARBONFIBERSORIENTATIONISCONSISTENTWITHTHELONGESTEDGE322TENSILETESTTENSILETESTSWERECONDUCTEDACCORDINGTOISO5271997PLASTICSDETERMINATIONOFTENSILEPROPERTIESSTANDARD,EXCEPTTHETENSILESPECIMENS,ARESLIGHTLYDIFFERENTBECAUSEOFTHELIMITATIONOFTHEPRINTINGSIZEFORTHEEQUIPMENTFIGURE3BSHOWSTHEDIMENSIONSOFTHETENSILESPECIMENSINWHICHTHECARBONFIBERORIENTATIONISCOINCIDINGWITHTHEDIRECTIONOFTENSILELOADING323INTERLAMINARSHEARTESTINTERLAMINARSHEARTESTISPARTICULARLYIMPORTANTFORTHEFDMBASED3DPRINTINGPROCESSFORCFRTPCSTOCHARACTERIZETHEBONDINGSTRENGTHBETWEENLAYERSANDTHEINTERFACEBETWEENFIBERSANDMATRIX,WHICHMIGHTBETHEMOSTVULNERABLESPOTSIN3DPRINTINGTECHNOLOGYINTHISPAPER,INTERLAMINARSHEARTESTSWERECONDUCTEDACCORDINGTOISO141301998FIBERREINFORCEDPLASTICCOMPOSITESDETERMINATIONOFAPPARENTINTERLAMINARSHEARSTRENGTHBYSHORTBEAMMETHODSTANDARDFIGURE3CSHOWSTHEDIMENSIONSOFTHEINTERLAMINARSHEARSPECIMENSANDTHEOPERATIONSPECIFICATIONOFTHETESTSTANDARDINTHESESPECIMENS,THEORIENTATIONOFTHECARBONFIBERSISCONSISTENTWITHTHELONGESTEDGEOFTHEPARTSFIGURE3THEDIMENSIONSOFSPECIMENSANDOPERATIONSPECIFICATIONINTHESTANDARDMMDOWNLOADEDBYXIANJIAOTONGUNIVERSITYAT011001MARCH2017PT2123DPRINTINGCHUNCHENGYANG,XIAOYONGTIAN,TENGFEILIU,YICAOANDDICHENLIRAPIDPROTOTYPINGJOURNALVOLUME23NUMBER120172092154EXPERIMENTALRESULTSANDDISCUSSION41EXPERIMENTALRESULTS411THREEPOINTBENDINGTESTFLEXURALSTRENGTHOF10WTCCF/ABS3DPRINTINGFORCFRTPCSSPECIMENSISSHOWNINFIGURE4INCOMPARISONWITHTHEFLEXURALSTRENGTHSOFABSFDM,ABSINJECTIONMOLDINGAND10WTCCF/ABSINJECTIONMOLDINGTHEEXPERIMENTALRESULTSHOWSTHATTHEFLEXURALSTRENGTHOFTHEPRINTEDPARTSCANREACH127MPA,FARGREATERTHANTHEFLEXURALSTRENGTHOFABSPARTS80MPAANDCLOSETOTHEONEOFCCF/ABS140MPAHUANGETAL,2013FABRICATEDBYTHETRADITIONALINJECTIONMOLDINGMETHODTHEFLEXURALMODULUSOFTHESECCF/ABSSPECIMENSIS772GPA,MORETHANTHREETIMESTHEFLEXURALMODULUSOFABS2GPAFIGURE5SHOWSTHEFRACTUREMODEFORTHEFLEXURALBEHAVIOROFTHESECCF/ABSSPECIMENSINTHETHREEPOINTBENDINGTESTBECAUSETHESPECIMENSARESUBJECTEDTOBOTHTENSILEANDCOMPRESSIVESTRESSESDURINGBENDING,THESTRESSTHATOCCURREDINTHECOMPOSITESPECIMENSISRATHERCOMPLEX,RESULTINGINDIFFERENTFRACTUREMODESFUJIHARAETAL,2004FORTHEPARTSMADEBYTHE3DPRINTINGFORCFRTPCS,THEFRACTUREMODEISTHESURFACETENSIONFRACTURE,INWHICHTHETHERMOPLASTICMATRIXISFRACTUREDBYTHETENSILESTRESSFIRSTANDTHENTHEFIBERSAREPULLEDOUTFROMTHEMATRIXFIGURE4DIFFERENTFLEXURALSTRENGTHSANDFLEXURALMODULUSOFABSFDM,ABSINJECTIONMOLDING,10WTCCF/ABS3DPRINTINGFORCFRTPCSAND10WTCCF/ABSINJECTIONMOLDINGFIGURE5FRACTUREMODEFORTHEFLEXURALBEHAVIOROFTHESPECIMENSINTHETHREEPOINTBENDINGTEST412TENSILETESTASSHOWNINFIGURE6,THEULTIMATETENSILESTRENGTHOF10WTCCF/ABS3DPRINTINGFORCFRTPCSCANBEPROMOTEDTO147MPA,MORETHANTWICETHETENSILESTRENGTHOFINJECTIONMOLDEDABS50MPANEVERTHELESS,THISULTIMATETENSILESTRENGTHISSTILLLESSTHANTHEONEOF10WTCCF/ABSBYINJECTIONMOLDINGMETHOD200MPAHUANGETAL,2013MOREOVER,THETENSILEMODULUSOFTHESECFRTPCSSPECIMENSIS4185GPA,ONLYTWICETHETENSILEMODULUSOFABSFIGURE7SHOWSTHEFRACTUREMODEOFTHECCF/ABSSPECIMENSINTHETENSILETESTATFIRST,THETHERMOPLASTICMATRIXISFRACTUREDBYTHETENSIONANDTHEFIBERSAREPULLEDOUTFROMTHEMATRIXINTHESPECIMENSBREAKAGENEXT,ALTHOUGHTHEFIBERSBREAKAWAYFROMTHESURROUNDINGTHERMOPLASTIC,THEFIBERSBEGINTORUPTUREALMOSTINSIDETHEMATRIX,ANDFINALLY,THEBROKENFIBERSGETOUTOFTHECCF/ABSSPECIMENSFIGURE6TENSILESTRENGTHSOFABSFDM,ABSINJECTIONMOLDING,10WTCCF/ABS3DPRINTINGFORCFRTPCSAND10WTCCF/ABSINJECTIONMOLDINGFIGURE7FRACTUREMODEOFTHECCF/ABSSPECIMENSINTHETENSILETESTDOWNLOADEDBYXIANJIAOTONGUNIVERSITYAT011001MARCH2017PT2133DPRINTINGCHUNCHENGYANG,XIAOYONGTIAN,TENGFEILIU,YICAOANDDICHENLIRAPIDPROTOTYPINGJOURNALVOLUME23NUMBER12017209215413INTERLAMINARSHEARTESTASSHOWNINFIGURE8,THEINTERLAMINARSHEARSTRENGTHOFTHESE10WTCCF/ABSSPECIMENSINTHETESTWASCALCULATEDTOBE281MPA,AVERYSMALLVALUECOMPAREDWITHTHESHEARSTRENGTH24MPAOFABSPARTSMADEBYTHEINJECTIONMOLDINGMETHODTHEEXPERIMENTALRESULTOFTHEINTERLAMINARSHEARTESTEMERGESTHATTHEINTERLAMINARBONDINGCOULDBETHEMOSTVULNERABLEPOINTINTHECFRTPCSPARTSFABRICATEDBYTHE3DPRINTINGMETHODFIGURE9ILLUSTRATESTHATTHEFRACTUREBEHAVIORININTERLAMINARSHEARWASCAUSEDBYTHEFRACTUREBETWEENTHETHERMOPLASTICPOLYMERMATRIXANDTHEEXFOLIATIONBETWEENTHECARBONFIBERSANDTHEMATRIX42DISCUSSION421CONTROLLABLEFIBERORIENTATION,DISTRIBUTIONANDCONTENTTHE3DPRINTINGTECHNOLOGYFORCFRTPCS,WHICHISANINTEGRATEDTRANSIENTPROCESSCONSISTINGOFTHETHERMOPLASTICPOLYMERMELTING,THECONTINUOUSFIBERHOTDIPPINGANDTHECOMPOSITEMATERIALSMIXEDEXTRUDING,MANUFACTURESCOMPOSITEPARTSLINEBYLINEANDLAYERBYLAYERTHISTECHNOLOGYCANREALIZETHEPREPARATIONOFCFRTPCMATERIALANDTHEINTEGRATEDMANUFACTURINGOFTHEPARTSWITHCOMPLEXSTRUCTUREHENCE,ITISADVANTAGEOUSTODESIGN,ARRANGEANDREALIZETHEORIENTATIONANDDISTRIBUTIONOFTHEFIBERSINSIDETHETHERMOPLASTICMATRIXBYDESIGNINGTHEPRINTINGSTRATEGYANDFIGURE8INTERLAMINARSHEARSTRENGTHSOFABSINJECTIONMOLDINGAND10WTCCF/ABSFDMFORCFRTPCSFIGURE9INTERLAMINARSHEARBEHAVIOROFTHESE10WTCCF/ABSSPECIMENSOPTIMIZINGTHEPRINTINGPROCESSPARAMETERSASSHOWNINFIGURE10,AREASONABLEPRINTINGPATHIN3DPRINTINGCANARRANGEFIBERSTOOBTAINACONSISTENTDIRECTIONANDAUNIFORMDISTRIBUTIONINCOMPOSITEPARTSMOREOVER,ADJUSTINGSOMEPROCESSPARAMETERSIN3DPRINTINGTECHNOLOGY,SUCHASFEEDINGSPEEDOFMATERIAL,TRAVELLINGSPEED,THEDIAMETEROFPOLYMERFILAMENT,ETC,CANCHANGETHEFIBERCONTENTREADILYFIGURE11OBVIOUSLY,DIFFERENTFIBERORIENTATIONS,DISTRIBUTIONSANDCONTENTHAVEASIGNIFICANTIMPACTONTHEMECHANICALPROPERTIESOFCFRTPCS422MICROSTRUCTURESANDMESO/MICRO/NANOSCALEINTERFACIALPERFORMANCETHEMECHANICALEXPERIMENTALRESULTSSHOWTHATTHEFLEXURALSTRENGTHANDTHETENSILESTRENGTHHAVEBEENGREATLYIMPROVEDCOMPAREDWITHABSPARTS,WHICHMEANSTHATTHEPARTSFABRICATEDBY3DPRINTINGPROCESSCANHAVETHEPOTENTIALTOBEUSEDASTHELOADBEARINGSTRUCTURESININDUSTRIALAPPLICATIONSHOWEVER,THESETESTRESULTSALSOEXPOSETHELOWINTERLAMINARSHEARSTRENGTHANDTHEINFERIORINTERFACEPERFORMANCETHESEMECHANICALPERFORMANCESCANBEEXPLAINEDBYTHEMICROSTRUCTURESANDINTERFACIALPERFORMANCEINTHEPRINTEDCFRTPCSPARTSFIGURE12SHOWSTHESPECIALSTRUCTUREANDINTERFACECHARACTERISTICINTHECROSSSECTIONOFTHECOMPOSITEPARTTHEREARETHREESCALEINTERFACESIN3DPRINTINGFORCFRTPCS,NAMELY,THEMESOSCALEINTERFACEDISTRIBUTINGOVERTHEPART,THENANOSCALEINTERFACEBETWEENEACHFILLINGLINEANDTHEMICROSCALEINTERFACEBETWEENFIBERSANDMATRIXTHEMESOSCALEINTERFACEAPPEA
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:用于连续纤维增强热塑性复合材料的3D打印:机制和性能【中卫6255字】
链接地址:https://www.renrendoc.com/p-9855618.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!